XNA 4.0 RPG Tutorials
Part 31

Tile Engine Update

I'm writing these tutorials for the new XNA 4.0 framework. The tutorials will make more sense if they
are read in order. You can find the list of tutorials on the XNA 4.0 RPG tutorials page of my web site. [
will be making my version of the project available for download at the end of each tutorial. It will be
included on the page that links to the tutorials.

In this tutorial I'm going to make an update to the tile engine and in doing so the levels. I started doing
something in my tile engines that I really liked. I created an abstract base that represents a layer of the
map. I also have a class that inherits from this class that represents a layer of tiles. I also have other
layers like an item layer and a sprite layer. On the item layer I have things like chests that the player
interacts with. On the sprite layer you can have animated tiles that will be updated each frame of the
game. You are unlimited in the types of layers you can have. All of the layers can still be managed by
the map class. Instead of using the abstract class I'm going to use an interface instead.

To get started you will want to add a class that represents a layer. Right click the TileEngine folder in
the XRpgLibrary folder, select Add and then Code File. Name this new file ILayer. The code for that
file follows next.

using System.Collections.Generic;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;

namespace XRpglLibrary.TileEngine

{

public interface ILayer

{
void Update (GameTime gameTime) ;
void Draw(SpriteBatch spriteBatch, Camera camera, List<Tileset> tilesets);

}

A simple interface that has two methods associated with it. There are also some using statements to
bring classes into scope. The first method is an Update method that allows a layer to update itself,
useful for animated tiles and sprites. The second is a Draw method that allows a layer to draw itself.
For a layer to draw itself it needs a SpriteBatch, Camera, and a List<Tileset>.

The next step is to update the MapLayer class to implement the ILayer interface. Update the
MapLayer class to the following.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;


http://xnagpa.net/xnarpg4tutorials.html




Not many changes here. The first is MapLayer now implements the ILayer interface. The only other
change is that I included a blank Update method, to complete implementing the interface as there was
already a Draw method that matches the interface.

Next I will update the TileMap class to use the interface. There were a number of changes to the




TileMap class. The new TileMap class follows next.




#region Method Region

public void AddLayer (ILayer layer)
{

if (layer is MapLayer)
{
if (! (((MapLayer)layer) .Width == mapWidth && ((MaplLayer)layer) .Height ==
mapHeight))
throw new Exception ("Map layer size exception");

}

mapLayers.Add (layer) ;
}
public void AddTileset (Tileset tileset)

{
tilesets.Add(tileset) ;

}

public void Update (GameTime gameTime)
{
foreach (ILayer layer in maplayers)
{
layer.Update (gameTime) ;
t
}

public void Draw (SpriteBatch spriteBatch, Camera camera)
{

foreach (MapLayer layer in mapLayers)

{

layer.Draw (spriteBatch, camera, tilesets);
}
}

#endregion

The first change is that instead of having a List<MapLayer> | now have a List<ILayer> for the layers
in the map. The next change is in the constructors. Instead of taking a List<MapLayer> the first
constructor now takes three MapLayer objects. Eventually I will expand it to take more objects but it
works for now. The constructor assigns the tilesets field and creates a new List<ILayer> for the layers.
I then add the baseLayer parameter to the List<ILayer>. To add the other layers I use the AddLayer
method to confirm that layers are the same size. I then set the mapWidth and mapHeight fields using
the baseLayer.Width and baseLayer.Height respectively.

The next constructor still takes a Tileset and MapLayer object as arguments. The only real changes are
that I renamed the MapLayer parameter to baseLayer and instead of creating a List<MapLayer> |
create a List<ILayer>.

I also modified the AddLayer method. It now takes an ILayer parameter rather than a MapLayer
parameter. Since both constructors require a MapLayer as a parameter I check to see if the type of
layer being added is a MapLayer. There is then an if statement that checks if the width and height of
the layer are not the height and width of the map. MapLayers must be the same width as the base layer
so if the size of both are not the size of the base I raise an exception. I then add the layer to the list of
layers.

That broke the LoadGameScreen and CharacterGeneratorScreen classes because we were using the
constructor that passes in a lists of tile sets and map layers in the CreateWorld methods. First, change



the CreateWorld method of LoadGameScreen to the following.

The flow is basically the same. I create the two tile sets and the two map layers. I just removed the two
List<T> variables as they aren't needed. I then use the second constructor, the one that takes a Tileset
and ILayer arguments. To create the TileMap object. I then use the AddTileset and AddLayer
methods of TileMap to add the second tile set and layer.

The changes to the CreateWorld method of CharacterGeneratorScreen were the same as in the
LoadGameScreen. You can change that method to the following.




The other thing that was broken was FormMain in the XLevelEditor project. The first thing to change
however is the layers field. Instead of a List<MapLayer> I use a List<ILayer>. Change the layers
field to the this.




The first thing that was broken was the newLayerToolStripMenultem_Click method. It was where [
created a map if the map field was null. I had to create the map using the second constructor that takes
a Tileset and a MapLayer. Update the newLayerToolStringMenultem_Click method.

So, what changed here is the code for the if statement that checks if the map field is null. I use the
constructor that takes a single TileSet and a ILayer. There is then a two for loops. They start from 1
instead of 0 because the first object is already in the map and you down want it added again. The first
loop adds in tile sets and the second adds in layers.

The next thing that was broken is the SetTiles method. The layers are no longer just MapLayers so [
can't use the methods and properties associated with MapLayers. Change the SetTiles method to the
follow.




What the method does is check to see if the selected layer is a MapLayer. If it is a MapLayer I cast
the ILayer to a MapLayer so I can use the methods and properties of the MapLayer class.

The saveLevelToolStripMenultem_Click was broken as well. Again it was because I'm using ILayer
instead of MapLayer to hold information. What I did was in the for loop that loops through the layers
is check to see if the layer is a MapLayer. If it is a MapLayer I cast the layer to be a MapLayer.
Change the saveLevelToolStripMenultem_Click to the following.




The same problem is in the saveLayerToolStripMenultem_Click method. You can change that
method to the following.

Opening levels and layers is also broken. For now I'm going to make the assumption that all levels
being loaded are made of MapLayers. When I add other layer types I will have to update the saving




and loading code. It is unfortunate that so much got broken but it will be well worth the headache later
on. First the openLevelToolStripMenultem_Click method. You can change that method to the
following.




The change here is where I create the map. I did it as before, after creating all of the map layers and tile
sets. | create a TileMap using the constructor that takes a single tile set and map layer. I then loop
through the remaining tile sets and add them using the AddTileset method. I then do the same for the
layers using the AddLayer method.

That just leaves the openLayerToolStripMenultem_Click method. You can change that method to the
following.




The change again is in creating a new map if the map field is null. I create a map using the constructor
that takes a tile set and a map layer. I then loop through any other tile sets and add them to the map.

I think I'm going to end this tutorial here. I wanted to flesh out classes related to spells and start on the
classes related to effects. Things are starting to take form but there is a long way to go yet. I encourage
you to visit the news page of my site, XNA Game Programming Adventures, for the latest news on my
tutorials.

Good luck in your game programming adventures!

Jamie McMahon


http://xnagpa.net/news.html
http://xnagpa.net/news.html

