
XNA 4.0 RPG Tutorials

Part 30

Updating Weapons

I'm writing these tutorials for the new XNA 4.0 framework. The tutorials will make more sense if they
are read in order. You can find the list of tutorials on the XNA 4.0 RPG tutorials page of my web site. I
will be making my version of the project available for download at the end of each tutorial. It will be
included on the page that links to the tutorials.

I wasn't going to modify weapons to use effects but in the end it makes sense to update them. It is going
to break a few things so this is going to be a rather tedious tutorial. In the end it will be well worth the
effort though.

The first step is to add in an override of the ToString method of DamageEffectData. Add this override
of the ToString method to the Virtual Method Region of DamageEffectData.

public override string ToString()
{
 string toString = Name + ", " + DamageType.ToString() + ", ";
 toString += AttackType.ToString() + ", ";
 toString += DieType.ToString() + ", ";
 toString += NumberOfDice.ToString() + ", ";
 toString += Modifier.ToString();

 return toString;
}

Nothing hard there. I just create a local variable and build a string that represents the instance of
DamageEffectData and then return it. The next step is to update the WeaponData class. You want to
replace the old field related to damage with a DamageEffectData field. Then update the ToString
method to use DamageEffectData now. Update the WeaponData class to the following.

Weapons will have a DamageEffectData associated with them because they cause damage. You will
need to update the WeaponData and Weapon classes. I will start with the WeaponData class. Change
that class to the following.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using RpgLibrary.EffectClasses;

namespace RpgLibrary.ItemClasses
{
 public class WeaponData
 {
 public string Name;
 public string Type;
 public int Price;
 public float Weight;
 public bool Equipped;
 public Hands NumberHands;

http://xnagpa.net/xnarpg4tutorials.html

 public int AttackValue;
 public int AttackModifier;
 public DamageEffectData DamageEffectData;
 public string[] AllowableClasses;

 public WeaponData()
 {
 DamageEffectData = new DamageEffectData();
 }

 public override string ToString()
 {
 string toString = Name + ", ";
 toString += Type + ", ";
 toString += Price.ToString() + ", ";
 toString += Weight.ToString() + ", ";
 toString += NumberHands.ToString() + ", ";
 toString += AttackValue.ToString() + ", ";
 toString += AttackModifier.ToString() + ", ";
 toString += DamageEffectData.ToString();

 foreach (string s in AllowableClasses)
 toString += ", " + s;

 return toString;
 }
 }
}

I replaced the DamageValue and DamageModifier fields with a DamageEffectData field that
represents the damage that the weapon does. I also update the ToString method to write out the
DamageEffectData field. I also added in a using statement for EffectClasses. The Weapon class took
a little more work. Update the Weapon class to the following.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using RpgLibrary.EffectClasses;

namespace RpgLibrary.ItemClasses
{
 public class Weapon : BaseItem
 {
 #region Field Region

 Hands hands;
 int attackValue;
 int attackModifier;
 DamageEffectData damageEffectData;

 #endregion

 #region Property Region

 public Hands NumberHands
 {
 get { return hands; }
 protected set { hands = value; }
 }

 public int AttackValue
 {
 get { return attackValue; }
 protected set { attackValue = value; }
 }

 public int AttackModifier

 {
 get { return attackModifier; }
 protected set { attackModifier = value; }
 }

 public DamageEffectData DamageEffect
 {
 get { return damageEffectData; }
 protected set { damageEffectData = value; }
 }

 #endregion

 #region Constructor Region

 public Weapon(
 string weaponName,
 string weaponType,
 int price,
 float weight,
 Hands hands,
 int attackValue,
 int attackModifier,
 DamageEffectData damageEffectData,
 params string[] allowableClasses)
 : base(weaponName, weaponType, price, weight, allowableClasses)
 {
 NumberHands = hands;
 AttackValue = attackValue;
 AttackModifier = attackModifier;
 DamageEffect = damageEffectData;
 }

 #endregion

 #region Abstract Method Region

 public override object Clone()
 {
 string[] allowedClasses = new string[allowableClasses.Count];

 for (int i = 0; i < allowableClasses.Count; i++)
 allowedClasses[i] = allowableClasses[i];

 Weapon weapon = new Weapon(
 Name,
 Type,
 Price,
 Weight,
 NumberHands,
 AttackValue,
 AttackModifier,
 DamageEffect,
 allowedClasses);

 return weapon;
 }

 public override string ToString()
 {
 string weaponString = base.ToString() + ", ";
 weaponString += NumberHands.ToString() + ", ";
 weaponString += AttackValue.ToString() + ", ";
 weaponString += AttackModifier.ToString() + ", ";
 weaponString += DamageEffect.ToString();

 foreach (string s in allowableClasses)
 weaponString += ", " + s;

 return weaponString();

 }

 #endregion
 }
}

Again there is a using statement for the EffectClasses namespace. I replaced the damageValue and
damageModifier fields with a DamageEffectData field. I updated the properties for the new field as
well. The constructor now takes a DamageEffectData field for damage instead of the two integer
fields. It sets the fields with the values passed in. I updated the Clone and ToString methods as well to
use the new field.

That ends up breaking a lot of things. It breaks the item editor and the weapons that were created. The
best solution that I could come up with is to delete the weapons that were added and update the editor.
Browse to the Weapon folder in the EyesOfTheDragonContent project. Select all of the entries, right
click on them and select Delete. Next, right click the RpgEditor project and select Set as StartUp
Project. You will have four errors, all of them in FormWeaponDetails. The first step is to redesign
the form. I'm going to make our life a little easier though. A weapon only causes Weapon damage. The
will also only attack Health. That leaves having to change the form so you can select the DieType,
number of dice, and modifier. The finished form in the designer appears below.

First, make your form bigger to allow for the new controls. I deleted the Damage Value: label and the
mtbDamageValue masked text box. I deleted the Damage Modifier: label and mtbDamageModifier
as well. Under the Attack Modifier: label I dragged a new label and set its Text property to Die Type:.
Beside that I dragged a combo box. Under the Die Type: label I dragged on and positioned a label and
set its Text property to Number Of Dice. I dragged a numeric up down control. Under those I dragged
a label and set its Text property to Damage Modifier:. I dragged a masked text box beside that label
and under the numeric up down. I then resized the form back to the desired size. I also moved the OK
and Cancel buttons closer to the bottom of the form and resized the list boxes. The properties I set for
the new controls are in the following tables.

Combo Box
Property Value
(Name) cboDieType
DropDownStyle DropDownList
Location 115, 194
Size 100, 21
TabIndex 17

Numeric Up Down
Property Value
(Name) nudDice
Location 115, 221
Minimum 1
Size 100, 20
TabIndex 18

Masked Text Box
Property Value
(Name) mtbDamageModifier
Location 115, 247
Mask 0
Size 100, 20
TabIndex 19

The next step will be to add the code for the form. Bring up the code for FormWeaponDetails and
update it to the following.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

using RpgLibrary.ItemClasses;
using RpgLibrary;

namespace RpgEditor
{
 public partial class FormWeaponDetails : Form
 {
 #region Field Region

 WeaponData weapon = null;

 #endregion

 #region Property Region

 public WeaponData Weapon
 {
 get { return weapon; }
 set { weapon = value; }
 }

 #endregion

 #region Constructor Region

 public FormWeaponDetails()
 {
 InitializeComponent();

 this.Load += new EventHandler(FormWeaponDetails_Load);
 this.FormClosing += new FormClosingEventHandler(FormWeaponDetails_FormClosing);

 btnMoveAllowed.Click += new EventHandler(btnMoveAllowed_Click);
 btnRemoveAllowed.Click += new EventHandler(btnRemoveAllowed_Click);
 btnOK.Click += new EventHandler(btnOK_Click);
 btnCancel.Click += new EventHandler(btnCancel_Click);
 }

 #endregion

 #region Event Handler Region

 void FormWeaponDetails_Load(object sender, EventArgs e)
 {
 foreach (string s in FormDetails.EntityDataManager.EntityData.Keys)
 lbClasses.Items.Add(s);

 foreach (Hands location in Enum.GetValues(typeof(Hands)))
 cboHands.Items.Add(location);

 foreach (DieType die in Enum.GetValues(typeof(DieType)))
 cboDieType.Items.Add(die);

 cboHands.SelectedIndex = 0;
 cboDieType.SelectedIndex = 0;
 cboDieType.SelectedValue = Enum.GetName(typeof(DieType), DieType.D4);

 if (weapon != null)
 {
 tbName.Text = weapon.Name;
 tbType.Text = weapon.Type;
 mtbPrice.Text = weapon.Price.ToString();
 nudWeight.Value = (decimal)weapon.Weight;
 cboHands.SelectedIndex = (int)weapon.NumberHands;
 mtbAttackValue.Text = weapon.AttackValue.ToString();
 mtbAttackModifier.Text = weapon.AttackModifier.ToString();

 for (int i = 0; i < cboDieType.Items.Count; i++)
 {
 if (cboDieType.Items[i].ToString() ==
weapon.DamageEffectData.DieType.ToString())
 {
 cboDieType.SelectedIndex = i;
 cboDieType.SelectedValue = cboDieType.Items[i];
 break;
 }
 }

 nudDice.Value = weapon.DamageEffectData.NumberOfDice;

 mtbDamageModifier.Text = weapon.DamageEffectData.Modifier.ToString();

 foreach (string s in weapon.AllowableClasses)
 {
 if (lbClasses.Items.Contains(s))
 lbClasses.Items.Remove(s);

 lbAllowedClasses.Items.Add(s);
 }
 }
 }

 void FormWeaponDetails_FormClosing(object sender, FormClosingEventArgs e)
 {
 if (e.CloseReason == CloseReason.UserClosing)
 {
 e.Cancel = true;
 }
 }

 void btnMoveAllowed_Click(object sender, EventArgs e)
 {
 if (lbClasses.SelectedItem != null)
 {
 lbAllowedClasses.Items.Add(lbClasses.SelectedItem);
 lbClasses.Items.RemoveAt(lbClasses.SelectedIndex);
 }
 }

 void btnRemoveAllowed_Click(object sender, EventArgs e)
 {
 if (lbAllowedClasses.SelectedItem != null)
 {
 lbClasses.Items.Add(lbAllowedClasses.SelectedItem);
 lbAllowedClasses.Items.RemoveAt(lbAllowedClasses.SelectedIndex);
 }
 }

 void btnOK_Click(object sender, EventArgs e)
 {
 int price = 0;
 float weight = 0f;
 int attVal = 0;
 int attMod = 0;
 int damMod = 0;

 if (string.IsNullOrEmpty(tbName.Text))
 {
 MessageBox.Show("You must enter a name for the item.");
 return;
 }

 if (!int.TryParse(mtbPrice.Text, out price))
 {
 MessageBox.Show("Price must be an integer value.");
 return;
 }

 weight = (float)nudWeight.Value;

 if (!int.TryParse(mtbAttackValue.Text, out attVal))
 {
 MessageBox.Show("Attack value must be an interger value.");
 return;
 }

 if (!int.TryParse(mtbAttackModifier.Text, out attMod))
 {
 MessageBox.Show("Attack modifier must be an interger value.");
 return;

 }

 if (!int.TryParse(mtbDamageModifier.Text, out damMod))
 {
 MessageBox.Show("Damage modifier must be an integer value.");
 return;
 }

 List<string> allowedClasses = new List<string>();

 foreach (object o in lbAllowedClasses.Items)
 allowedClasses.Add(o.ToString());

 weapon = new WeaponData();

 weapon.Name = tbName.Text;
 weapon.Type = tbType.Text;
 weapon.Price = price;
 weapon.Weight = weight;
 weapon.NumberHands = (Hands)cboHands.SelectedIndex;
 weapon.AttackValue = attVal;
 weapon.AttackModifier = attMod;
 weapon.AllowableClasses = allowedClasses.ToArray();

 weapon.DamageEffectData.Name = tbName.Text;
 weapon.DamageEffectData.AttackType = RpgLibrary.EffectClasses.AttackType.Health;
 weapon.DamageEffectData.DamageType = RpgLibrary.EffectClasses.DamageType.Weapon;

 weapon.DamageEffectData.DieType = (DieType)Enum.Parse(
 typeof(DieType),
 cboDieType.Items[cboDieType.SelectedIndex].ToString());

 weapon.DamageEffectData.NumberOfDice = (int)nudDice.Value;
 weapon.DamageEffectData.Modifier = damMod;

 this.FormClosing -= FormWeaponDetails_FormClosing;
 this.Close();
 }

 void btnCancel_Click(object sender, EventArgs e)
 {
 weapon = null;
 this.FormClosing -= FormWeaponDetails_FormClosing;
 this.Close();
 }

 #endregion
 }
}

Most of the code is the same but enough of it changed that I wanted to give you the code for it all. The
first changes were in the FormWeaponDetails_Load method. The first new code is that I add all of the
values in the DieType enumeration to cboDieType. What is different is that you can't just cast DieType
to an integer for the SelectedIndex property of cboDieType because DieType has values associated
with each member of the enumeration. For example, 4 is associated with D4 instead of 0. For that
reason I set the SelectedValue property of cboDieType to the name of DieType.D4. I get the name
using the GetName method passing in the type and the value.

The next change is in the if statement where I check to see if weapon is not null. The first change is a
for loop that loops through all of the items in cboDieType. I check to see if the ToString value of the
item is equal to the ToString value of the DieType field of DamageEffectData of weapon. I set
SelectedIndex to i and SelectedValue to cboDieType.Items[i]. I also break out of the loop. I then set
the Value property of nudDice to the NumberOfDice field of DamageEffectData. I also set the Text
property of mtbDamageModifier to the Modifier field.

I also had to modify btnOK_Click because WeaponData changed as well as the controls on the form.
I of course removed everything that had to do with damage to use DamageEffectData. The verifying
of values on controls is like before. The new part is creating a new WeaponData object. You have to
set the fields of DamageEffectData. I set the Name to be the Text property of tbName as weapons
will be unique so the DamageEffectData associated with weapons will also be unique by name. For
now I'm assuming that the AttackType will be AttackType.Health and that the DamageType will be
DamageType.Weapon. You could easily have controls on the form to select these. The hard part was
setting the DieType field. I used the Enum.Parse method which parses a string to be the associated
value of an enumeration. For the type you pass in typeof(DieType) and for the string I passed in the
item at SelectedIndex and the ToString method. I then set the NumberOfDice and Modifier fields
using the Value property of nudDice and damMod variable respectively.

You could have different types of weapon damages like piercing, slashing and crushing and different
armors have different resistances to the types of damages. A lot of pen and paper RPGs follow this
route and I've seen computer RPGs follow that route as well. I'm not going to go into that depth in the
tutorials but it is certainly possible to do it. What I've done doesn't allow for enchanted weapons and
armor, like a flaming sword. I may in another tutorial add in enchanted weapons and armor. I would be
doing that by creating classes that inherit from Weapon and Armor rather than changing the existing
classes.

If you build and run the editor now things will work. You will be able to create weapons, save them and
read them back in like before. I think the last thing I'm going to cover in this tutorial is adding in
updated data for weapons. I will use a table like I did before.

Weapons
Name Type Price Weight Hands Attack

Value
Attack

Modifier
Die

Type
#

of Dice
Damage
Modifier

Allowed Classes

Club Crushing 8 10 One 4 0 6 1 0 Fighter
Rogue
Priest

Mace Crushing 16 12 One 6 0 8 1 0 Fighter
Rogue
Priest

Flail Crushing 20 14 One 8 0 10 1 0 Fighter
Priest

Apprentice Staff Magic 20 5 Two 6 0 6 1 0 Wizard

Acolyte Staff Magic 40 8 Two 8 0 8 1 0 Wizard

Dagger Piercing 10 3 One 4 0 6 1 0 Fighter
Rogue

Short Sword Piercing 20 10 One 6 0 8 1 0 Fighter
Rogue

Long Sword Slashing 40 15 One 10 0 10 1 0 Fighter
Rogue

Broad Sword Slashing 60 18 One 12 0 12 1 0 Fighter
Rogue

Great Sword Slashing 80 25 Two 12 0 8 2 0 Fighter

Halberd Slashing 100 30 Two 16 0 20 1 0 Fighter

War Axe Slashing 20 15 One 10 0 10 1 0 Fighter
Rogue

Battle Axe Slashing 50 25 Two 12 0 8 2 0 Fighter

The last thing that you want to do for this tutorial is to add the new data to the content project for the
game. Open up the directory where your Game folder is in Windows Explorer. Now drag the Game
folder from Windows Explorer onto the EyesOfTheDragonContent project to update the content for
the game. If you drill down to the Weapon folder from the root folder Game you will find all of the
weapons. As well, right click the EyesOfTheDragon project and select Set as StartUp Project.

I think I'm going to end this tutorial here. I wanted to expand weapons to use the new DamageEffect
and DamageEffectData classes. Things are starting to take form but there is a long way to go yet. I
encourage you to visit the news page of my site, XNA Game Programming Adventures , for the latest
news on my tutorials.

Good luck in your game programming adventures!

Jamie McMahon

http://xnagpa.net/news.html
http://xnagpa.net/news.html

