
XNA 4.0 RPG Tutorials

Part 29

Resistances and Weaknesses

I'm writing these tutorials for the new XNA 4.0 framework. The tutorials will make more sense if they
are read in order. You can find the list of tutorials on the XNA 4.0 RPG tutorials page of my web site. I
will be making my version of the project available for download at the end of each tutorial. It will be
included on the page that links to the tutorials.

This is going to be a rather short tutorial where I cover adding in resistances and weaknesses to
different types of damage. The first thing I did was update the DamageType enumeration in the
DamageEffectData class. Update the DamageType enumeration to the following.

public enum DamageType { Weapon, Poison, Disease, Fire, Earth, Water, Air }

A bit of a change. I replaced Crushing, Piercing and Slashing with one value, Weapon, that
represents damage done with a weapon. I did that because I'd have to go back and make a lot of
modifications to the item classes and editors for weapons and armor to have different resistances and
weaknesses. I just didn't want to make that many changes. You could modify weapons to do different
types of damage and armors have different strengths and weaknesses against different damage types. I
also renamed Ice to Water and Lightning to Air just to be a little more generic.

I also want to add in four classes. Two classes are for the weaknesses that a character has and the other
two for the resistances that a character has. Right click the EffectClasses folder, select Add and then
Class. Name the new class WeaknessData. Repeat that procedure three more times and name the new
classes Weakness, ResistanceData and Resistance. The code for those classes is next.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.EffectClasses
{
 public class WeaknessData
 {
 #region Field Region

 public DamageType WeaknessType;
 public int Amount;

 #endregion

 #region Property Region
 #endregion

 #region Constructor Region
 #endregion

 #region Method Region
 #endregion

http://xnagpa.net/xnarpg4tutorials.html

 #region Virtual Method Region
 #endregion
 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.EffectClasses
{
 public class Weakness
 {
 #region Field Region

 DamageType weakness;
 int amount;

 #endregion

 #region Property Region

 public DamageType WeaknessType
 {
 get { return weakness; }
 private set { weakness = value; }
 }

 public int Amount
 {
 get { return amount; }
 private set
 {
 if (value < 0)
 amount = 0;
 else if (value > 100)
 amount = 100;
 else
 amount = value;
 }
 }

 #endregion

 #region Constructor Region

 public Weakness(WeaknessData data)
 {
 WeaknessType = data.WeaknessType;
 Amount = data.Amount;
 }

 #endregion

 #region Method Region

 public int Apply(int damage)
 {
 return (damage + damage * amount / 100);
 }

 #endregion

 #region Virtual Method Region
 #endregion
 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.EffectClasses
{
 public class ResistanceData
 {
 #region Field Region

 public DamageType ResistanceType;
 public int Amount;

 #endregion

 #region Property Region
 #endregion

 #region Constructor Region
 #endregion

 #region Method Region
 #endregion

 #region Virtual Method Region
 #endregion
 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.EffectClasses
{
 public class Resistance
 {
 #region Field Region

 DamageType resistance;
 int amount;

 #endregion

 #region Property Region

 public DamageType ResistanceType
 {
 get { return resistance; }
 private set { resistance = value; }
 }

 public int Amount
 {
 get { return amount; }
 private set
 {
 if (value < 0)
 amount = 0;
 else if (value > 100)
 amount = 100;
 else
 amount = value;
 }
 }

 #endregion

 #region Constructor Region

 public Resistance(ResistanceData data)
 {
 ResistanceType = data.ResistanceType;
 Amount = data.Amount;
 }

 #endregion

 #region Method Region

 public int Apply(int damage)
 {
 return (damage - damage * amount / 100);
 }

 #endregion

 #region Virtual Method Region
 #endregion
 }
}

First important note is that I change the namespace from XRpgLibrary to RpgLibrary. The data
classes are basically the same other than the names of the first field. The WeaknessData class has
WeaknessType and ResistanceData has ResistanceType. Those fields are what the weakness or
resistance is applied to. If it is set to DamageType.Fire for example the entity is either weak against
fire or strong against fire. I had thought of making it so that if a resistance is greater than 100% that it
would heal the target. That would be something you could do but I ended up deciding against it. The
other field in the data classes is Amount which is the amount of the resistance or weakness.

The Weakness class has two fields weakness and amount. The weakness field is the type of weakness
and the amount field is the percentage of the weakness. An entity will have a percentage that they are
weak to. A fire type entity may have a high weakness to water where they will take 25% more damage
from a water attack. A resistance works in reverse. A fire type entity will be strong against a fire based
attack taking 75% less damage from a fire based attack. There are get and set accessors to assign and
get the values of the weakness and amount fields, WeaknessType and Amount respectively. The set
part for both is private because you don't want the values to change after initially set.

The constructor takes a WeaknessData parameter that is the weakness to be created. It just sets the
fields of the class using the values of the parameter passed in.

There is also a method in the class called Apply that will apply a weakness to the damage passed in. A
weakness to an attack type will increase the damage caused by that attack type. To calculate the
damage done after the weakness is applied you take the original damage and add the damage times the
amount divided by 100. That is just a basic percentage formula.

The Resistance class has two fields as well that are similar to the Weakness class resistance and
amount. The resistance field is the type of resistance and the amount field is the percentage of the
resistance like in the Weakness class. There are get and set accessors to assign and get the values of the
resistance and amount fields, ResistanceType and Amount respectively. The set part for both is
private because you don't want the values to change after they are set initially.
The constructor takes a ResistanceData parameter that describes the resistance to be created. It then
sets the fields for the class using the accessors and the values passed in.

There is an Apply method in the Resistance class as well that takes the damage that the resistance is
applied to. To apply the resistance you use a similar formula as the Apply method of the Weakness
class. You take the original damage and subtract the damage times the amount divided by 100. That
will reduce the damage by the percentage of the resistance.

You will need a way to track the weaknesses and resistances of the entities in the game. The best place
to do that would be in the Entity class. I'm going to add a new region to the Entity class. You will also
want to add in a using statement for the RpgLibrary.EffectClasses namespace to the Entity class. I
added my region after the Calculated Attribute Field and Property Region. Add the following to the
Entity class.

using RpgLibrary.EffectClasses;

#region Resistance and Weakness Field and Property Region

private readonly List<Resistance> resistances;

public List<Resistance> Resistances
{
 get { return resistances; }
}

private readonly List<Weakness> weaknesses;

public List<Weakness> Weaknesses
{
 get { return weaknesses; }
}

#endregion

The fields that I added are List<T> for both resistances and weaknesses that are readonly. There are
also public properties to expose the fields that are get only. The field resistances and property
Resistances are for resistances and weaknesses and Weaknesses are for weaknesses. What you need to
do now is modify the private constructor of the Entity class to initialize these new fields. Modify the
private constructor of the Entity class to the following.

private Entity()
{
 Strength = 10;
 Dexterity = 10;
 Cunning = 10;
 Willpower = 10;
 Magic = 10;
 Constitution = 10;

 health = new AttributePair(0);
 stamina = new AttributePair(0);
 mana = new AttributePair(0);

 skills = new Dictionary<string, Skill>();
 spells = new Dictionary<string, Spell>();
 talents = new Dictionary<string, Talent>();

 skillModifiers = new List<Modifier>();
 spellModifiers = new List<Modifier>();
 talentModifiers = new List<Modifier>();

 resistances = new List<Resistance>();
 weaknesses = new List<Weakness>();
}

There is one more thing to do with weaknesses and resistances. You need to update the Apply method
of DamageEffect to call the Apply method of any resistances and weaknesses. You would do that after
rolling the damage but before checking to see if the damage is less than one. The order that I will apply
them is first weaknesses and then resistances. It would be possible for an entity to have items with
resistances and weaknesses that counter act each other. Both still should be applied though. There is the
possibility that a lot of resistances will negate all damage and multiple weaknesses would greatly
increase the damage being done. When you are designing weaknesses and resistances for your game
you will have to be careful to balance them out so they don't make the game too hard or too easy when
an entity has the appropriate items. Change the Apply method of the DamageEffect class to the
following.

public override void Apply(Entity entity)
{
 int amount = modifier;

 for (int i = 0; i < numberOfDice; i++)
 amount += Mechanics.RollDie(dieType);

 foreach (Weakness weakness in entity.Weaknesses)
 if (weakness.WeaknessType == damageType)
 amount = weakness.Apply(amount);

 foreach (Resistance resistance in entity.Resistances)
 if (resistance.ResistanceType == damageType)
 amount = resistance.Apply(amount);

 if (amount < 1)
 amount = 1;

 switch (attackType)
 {
 case AttackType.Health:
 entity.Health.Damage((ushort)amount);
 break;
 case AttackType.Mana:
 entity.Mana.Damage((ushort)amount);
 break;
 case AttackType.Stamina:
 entity.Stamina.Damage((ushort)amount);
 break;
 }
}

There are two foreach loops. The first loops through all of the weaknesses in the Weakness property of
the entity. If the WeaknessType property of the weakness matches the damageType field then the
amount variable is set to the return value of the Apply method for the weakness. The foreach loop for
resistances works the same way.

I'm going to end this tutorial here. I just wanted to add in resistances and weaknesses to the different
types of effects. Things are really starting to take form and hopefully soon I will get to actually
clobbering some mobs. I encourage you to visit the news page of my site, XNA Game Programming
Adventures, for the latest news on my tutorials.

Good luck in your game programming adventures!

Jamie McMahon

http://xnagpa.net/news.html
http://xnagpa.net/news.html
http://xnagpa.net/news.html

