
XNA 4.0 RPG Tutorials

Part 28

Spells and Effects

I'm writing these tutorials for the new XNA 4.0 framework. The tutorials will make more sense if they
are read in order. You can find the list of tutorials on the XNA 4.0 RPG tutorials page of my web site. I
will be making my version of the project available for download at the end of each tutorial. It will be
included on the page that links to the tutorials.

In this tutorial I'm going to add some meat to the classes related to spells and effects. Spells are similar
to talents. I probably could have combined them into a single set of classes rather than dividing them
into two classes. I did it because I see talents as different than spells. I don't like the idea of a warrior
casting a spell. I do like the idea of a warrior having a special attack where he bashes an enemy with
their shield.

First, let's update the SpellData class. Change the code for the SpellData tclass o the following.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.SpellClasses
{
 public enum SpellType { Passive, Sustained, Activated }

 public class SpellData
 {
 #region Field Region

 public string Name;
 public string[] AllowedClasses;
 public Dictionary<string, int> AttributeRequirements;
 public string[] SpellPrerequisites;
 public int LevelRequirement;
 public SpellType SpellType;
 public int ActivationCost;
 public string[] Effects;

 #endregion

 #region Property Region
 #endregion

 #region Constructor Region

 public SpellData()
 {
 AttributeRequirements = new Dictionary<string, int>();
 }

 #endregion

 #region Method Region
 #endregion

http://xnagpa.net/xnarpg4tutorials.html

 #region Virtual Method region

 public override string ToString()
 {
 string toString = Name;

 foreach (string s in AllowedClasses)
 toString += ", " + s;

 foreach (string s in AttributeRequirements.Keys)
 toString += ", " + s + "+" + AttributeRequirements[s].ToString();

 foreach (string s in SpellPrerequisites)
 toString += ", " + s;

 toString += ", " + LevelRequirement.ToString();

 toString += ", " + SpellType.ToString();
 toString += ", " + ActivationCost.ToString();

 foreach (string s in Effects)
 toString += ", " + s;

 return toString;
 }

 #endregion
 }
}

Everything there should look familiar from that last tutorial. There are several fields in the SpellData
class. The first is Name, the name of the spell. Next is an array of strings, AllowedClasses, that holds
the classes that can learn the spell. I decided to go this route in the case where more than one class may
learn a specific spell rather than have two spells that achieve the same result. Next there is a dictionary
with string keys and integer values, AttributeRequirements, that holds any attribute values that a
character must have to learn the spell. There is then an array of strings, SpellPrerequisites, that will
hold any spells that must be learned before the spell can be learned. The next field, LevelRequirement,
will hold what level a character must be to learn the spell. In this way a low level character can't learn a
very powerful spell that will unbalance your game, whereas a high level character may need that spell
against the stronger foes. The field SpellType is the type of talent, whether it is passive, sustained, or
activated. I decided to use a passive spell what really isn't a spell. A wizard may, for example, learn a
spell that increases the damage they do. The next field, ActivationCost, is the cost required to activate
the spell. The last, Effects, is an array of strings that holds the effects that the spell may cause. Spells
will have a variety of effects like causing damage, healing, and a variety of other effects.

The constructor just creates a new Dictionary<string, int> for the AttributeRequirements field. The
one method, ToString, just creates a string that represents a SpellData object and returns it.

Now for the Spell class. Change the Spell class to the following.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using RpgLibrary.CharacterClasses;

namespace RpgLibrary.SpellClasses
{
 public class Spell
 {

 #region Field Region

 string name;
 List<string> allowedClasses;
 Dictionary<string, int> attributeRequirements;
 List<string> spellPrerequisites;
 int levelRequirement;
 SpellType spellType;
 int activationCost;
 List<string> effects;

 #endregion

 #region Property Region

 public string Name
 {
 get { return name; }
 }

 public List<string> AllowedClasses
 {
 get { return allowedClasses; }
 }

 public Dictionary<string, int> AttributeRequirements
 {
 get { return attributeRequirements; }
 }

 public List<string> SpellPrerequisites
 {
 get { return spellPrerequisites; }
 }

 public int LevelRequirement
 {
 get { return levelRequirement; }
 }

 public SpellType SpellType
 {
 get { return spellType; }
 }

 public int ActivationCost
 {
 get { return activationCost; }
 }

 public List<string> Effects
 {
 get { return effects; }
 }

 #endregion

 #region Constructor Region

 private Spell()
 {
 allowedClasses = new List<string>();
 attributeRequirements = new Dictionary<string, int>();
 spellPrerequisites = new List<string>();
 effects = new List<string>();
 }

 #endregion

 #region Method Region

 public static Spell FromSpellData(SpellData data)
 {
 Spell spell = new Spell();

 spell.name = data.Name;

 foreach (string s in data.AllowedClasses)
 spell.allowedClasses.Add(s.ToLower());

 foreach (string s in data.AttributeRequirements.Keys)
 spell.attributeRequirements.Add(
 s.ToLower(),
 data.AttributeRequirements[s]);

 foreach (string s in data.SpellPrerequisites)
 spell.SpellPrerequisites.Add(s);

 spell.levelRequirement = data.LevelRequirement;
 spell.spellType = data.SpellType;
 spell.activationCost = data.ActivationCost;

 foreach (string s in data.Effects)
 spell.Effects.Add(s);

 return spell;
 }

 public static bool CanLearn(Entity entity, Spell spell)
 {
 bool canLearn = true;

 if (entity.Level < spell.LevelRequirement)
 canLearn = false;

 string entityClass = entity.EntityClass.ToLower();

 if (!spell.AllowedClasses.Contains(entityClass))
 canLearn = false;

 foreach (string s in spell.AttributeRequirements.Keys)
 {
 if (Mechanics.GetAttributeByString(entity, s) < spell.AttributeRequirements[s])
 {
 canLearn = false;
 break;
 }
 }

 foreach (string s in spell.SpellPrerequisites)
 {
 if (!entity.Spells.ContainsKey(s))
 {
 canLearn = false;
 break;
 }
 }

 return canLearn;
 }

 #endregion

 #region Virtual Method Region
 #endregion
 }
}

Again that should look very familiar because it is basically the same code as the Talent class. First
thing that I did was include a using statement to bring the Entity class into scope in this class. There
are fields that match the fields from the SpellData class as well as get only properties to expose their
values. Instead of arrays I use the generic List<T> collection to hold the values. There is a private
constructor that takes no parameters. It creates new collections for the fields that are collections. You
don't use a constructor to create Spell objects, instead you use the static method FromSpellData.

The FromSpellData method takes a SpellData parameter called data. The first step is to create a new
Spell object using the private constructor. In a foreach loop I then loop through all of the entries in the
AllowedClasses field of the SpellData and add each item converted to a lower case string to the
allowedClasses field of the Spell object. I loop over the keys in the AttributeRequirements in data
and add the key converted to a lower case string with the value to attributeRequirements in spell. I do
the same with SpellPrerequisites and spellPrerequisites for data and spell. There are then three
straight assignments from data to spell. There is one last loop that assigns values from the Effects in
data to effects in spell. I then return the spell variable.

The last method, CanLearn, is also a static method that takes an Entity that is trying to learn a spell
and a Spell that represents the spell to be learned. There is a local variable canLearn that is set to true
initially. There are then a number of checks to see if all of the prerequisites for the talent have been
learned. If one of the checks fails canLearn will be set to false. The first check makes sure that the
level of the entity passed in is not less than the required level. I then get the name of the class for the
entity and convert it to a lower case string. I then use the Contains method of List<T> to see if the
class is not in the list of allowed classes. There is next a foreach loop that loops through all of the keys
in AttributeRequirements. I then use the GetAttributeByString method passing in the entity and the
key to get the value of the attribute of the entity and compare it to the value in the dictionary for the
key. If it is less than the minimum level I set can learn to false and break out of the loop. The last step is
to loop through all of the prerequisite spells for the spell. If a spell in the preequisites is not in the
player's spell book I set canLearn to false and break out of the loop.

I'm now going work on classes related to effects. I created classes called BaseEffect, BaseEffectData,
and BaseEffectDataManager. I had added an enumeration called EffectType but instead of using an
enumeration for the different types of effects I'm going to create classes that inherit from BaseEffect
that represent the different types of effects so I'm going to make BaseEffect an abstract class. First,
change the code for the BaseEffectDataManager to the following.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.EffectClasses
{
 public class BaseEffectDataManager
 {
 #region Field Region

 readonly Dictionary<string, BaseEffectData> effectData;

 #endregion

 #region Property Region

 public Dictionary<string, BaseEffectData> EffectData
 {
 get { return effectData; }

 }

 #endregion

 #region Constructor Region

 public BaseEffectDataManager()
 {
 effectData = new Dictionary<string, BaseEffectData>();
 }

 #endregion

 #region Method Region
 #endregion

 #region Virtual Method Region
 #endregion
 }
}

Fairly straight forward like the other manager classes. There is read only field, effectData, that is a
Dictionary<string, BaseEffectData> that will hold all of the BaseEffectData objects. There is a
public property, EffectData, that exposes the effectData field and is a get only property. The
constructor just creates a new Dictionary<string, BaseEffectData>.

Next is the BaseEffectData class. This class is going to be really simple, just a single string field
Name and a protected constructor. Change BaseEffectData to the following.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.EffectClasses
{
 public class BaseEffectData
 {
 #region Field Region

 public string Name;

 #endregion

 #region Property Region
 #endregion

 #region Constructor Region

 protected BaseEffectData()
 {
 }

 #endregion

 #region Method Region
 #endregion

 #region Virtual Method Region
 #endregion
 }
}

The BaseEffect class will be similar. It will be an abstract class though and have an abstract method as
well. Change the BaseEffect class to the following.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using RpgLibrary.CharacterClasses;

namespace RpgLibrary.EffectClasses
{
 public abstract class BaseEffect
 {
 #region Field Region

 protected string name;

 #endregion

 #region Property Region

 public string Name
 {
 get { return name; }
 protected set { name = value; }
 }

 #endregion

 #region Constructor Region

 protected BaseEffect()
 {
 }

 #endregion

 #region Method Region
 #endregion

 #region Virtual Method Region

 public abstract void Apply(Entity entity);

 #endregion
 }
}

The first thing is I included a using statement to bring the Enity class in CharacterClasses into scope
for the abstract method. There is one protected field, name, that is the name of the effect. There is a
public property to expose the value with a protected set. I included a protected constructor for the class.
I added an abstract method, Apply, that takes an Enity as a parameter. This method will be
implemented in classes that inherit from BaseEffect so their effects can be applied to an entity.

I'm going to add in two effects that inherit from BaseEffect: HealEffect and DamageEffect. I will be
adding data classes as well. Right click EffectClasses in the XRpgLibrary project, select Add and
then Class. Name this new class HealEffect. Repeat that process three more times and call the classes
DamageEffect, HealEffectData and DamageEffectData.

Change the code for the DamageEffectData and HealEffectData classes to the following.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.EffectClasses
{
 public enum DamageType { Crushing, Slashing, Piercing, Poison, Disease, Fire, Ice, Lightning,
Earth }
 public enum AttackType { Health, Mana, Stamina }

 public class DamageEffectData : BaseEffectData
 {
 #region Field Region

 public DamageType DamageType;
 public AttackType AttackType;
 public DieType DieType;
 public int NumberOfDice;
 public int Modifier;

 #endregion

 #region Property Region
 #endregion

 #region Constructor Region
 #endregion

 #region Method Region
 #endregion

 #region Virtual Method Region
 #endregion
 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.EffectClasses
{
 public enum HealType { Health, Mana, Stamina }

 public class HealEffectData : BaseEffectData
 {
 #region Field Region

 public HealType HealType;
 public DieType DieType;
 public int NumberOfDice;
 public int Modifier;

 #endregion

 #region Property Region
 #endregion

 #region Constructor Region
 #endregion

 #region Method Region
 #endregion

 #region Virtual Method Region
 #endregion
 }
}

I changed the base namespace of the classes from XRpgLibrary to RpgLibrary. To HealEffectData I
added in an enumeration for the types of healing. Health, Mana, and Stamina can all be healed, though

not necessarily with spells. You could have potions, and we will, that can restore lost mana, stamina
and health. I inherit HealEffectData from BaseEffectData. I added four fields to HealEffectData:
HealType, DieType, NumberOfDice, and Modifier. The first, HealType, tells what the effect is
healing. The others are used to determine how much is healed. You take a certain number of dice, roll
them, and add in a modifier. I will work it so that if NumberOfDice is 0 then just Modifier will heal,
for effects that heal a specific amount.

To DamageEffectData I added in two enumerations: AttackType and DamageType. DamageType is
the type of damage being done and AttackType is what is being attacked. I will eventually be adding in
resistance to the game to specific types of damage so I included DamageType. I will also be adding in
more effects to characters like stunned, asleep, petrified, etc. Those will be specific types of effects and
the effects will be curable. There will also be the ability to resist those types of effects. I will get to that
in a later tutorial. I inherit DamageEffectData from BaseEffectData as well. There are five fields in
this class: DamageType, AttackType, DieType, NumberOfDice, and Modifier. The last three work
the same as healing effects. DamageType is the type of damage being inflicted and AttackType is the
type of damage being inflicted.

I will deal with HealEffect next. This is the code for the HealEffect class.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using RpgLibrary.CharacterClasses;

namespace RpgLibrary.EffectClasses
{
 public class HealEffect : BaseEffect
 {
 #region Field Region

 HealType healType;
 DieType dieType;
 int numberOfDice;
 int modifier;

 #endregion

 #region Property Region
 #endregion

 #region Constructor Region

 private HealEffect()
 {
 }

 #endregion

 #region Method Region

 public static HealEffect FromHealEffectData(HealEffectData data)
 {
 HealEffect effect = new HealEffect();

 effect.healType = data.HealType;
 effect.dieType = data.DieType;
 effect.numberOfDice = data.NumberOfDice;
 effect.modifier = data.Modifier;

 return effect;

 }

 #endregion

 #region Virtual Method Region

 public override void Apply(Entity entity)
 {

 int amount = modifier;

 for (int i = 0; i < numberOfDice; i++)
 amount += Mechanics.RollDie(dieType);

 if (amount < 1)
 amount = 1;

 switch (healType)
 {
 case HealType.Health:
 entity.Health.Heal((ushort)amount);
 break;
 case HealType.Mana:
 entity.Mana.Heal((ushort)amount);
 break;
 case HealType.Stamina:
 entity.Stamina.Heal((ushort)amount);
 break;
 }
 }

 #endregion
 }
}

First, there is a using statement to bring CharacterClasses into scope, for Entity. There are fields that
match the fields in the HealEffectData class but they start with a lower case letter rather than an upper
case letter. This is how I generally write my code. Private fields generally start with a lower case letter
while public start with upper case letters. I included a private constructor because again I'll be using a
static method to create instance of HealEffect.

The FromHealEffectData method takes a HealEffectData object and returns a HealEffect object. It
consists of creating an object, assigning values, and returning the object. The other method is the
override of the Apply method. First there is a local variable, amount, that holds the amount that will be
healed set to the modifier field. Then there is a for loop that loops numberOfDice times. Each pass
through the loop adds the result of rolling dieType. An effect will always heal at least 1 point so if the
amount is less than 1 I set the amount to 1. If you specify numberOfDice to be zero then modifer will
be healed allowing a set value to be healed. Finally there is a switch statement on healType. If
healType is Health then I call the Heal method of Health for the entity passed in. I do similar for the
mana and stamina cases. If you recall, from way back when, the Heal method will add the value passed
in to the current value and if the current value is larger than the maximum it will set the current value to
the maximum.

DamageEffect is similar to HealEffect but works in reverse. It damages an entity rather than healing
it. The code for DamageEffect follows next.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using RpgLibrary.CharacterClasses;

namespace RpgLibrary.EffectClasses
{
 public class DamageEffect : BaseEffect
 {
 #region Field Region

 DamageType damageType;
 AttackType attackType;
 DieType dieType;
 int numberOfDice;
 int modifier;

 #endregion

 #region Property Region
 #endregion

 #region Constructor Region

 private DamageEffect()
 {
 }

 #endregion

 #region Method Region

 public static DamageEffect FromDamageEffectData(DamageEffectData data)
 {
 DamageEffect effect = new DamageEffect();

 effect.damageType = data.DamageType;
 effect.attackType = data.AttackType;
 effect.dieType = data.DieType;
 effect.numberOfDice = data.NumberOfDice;
 effect.modifier = data.Modifier;

 return effect;
 }

 #endregion

 #region Virtual Method Region

 public override void Apply(Entity entity)
 {
 int amount = modifier;

 for (int i = 0; i < numberOfDice; i++)
 amount += Mechanics.RollDie(dieType);

 if (amount < 1)
 amount = 1;

 switch (attackType)
 {
 case AttackType.Health:
 entity.Health.Damage((ushort)amount);
 break;
 case AttackType.Mana:
 entity.Mana.Damage((ushort)amount);
 break;
 case AttackType.Stamina:
 entity.Stamina.Damage((ushort)amount);
 break;
 }
 }

 #endregion
 }
}

There is a using statement to bring CharacterClasses into scope, for Entity. There are fields that
match the fields in the DamageEffectData class but they start with a lower case letter rather than an
upper case letter. I included a private constructor because again I'll be using a static method to create
instance of DamageEffect.

The FromDamageEffectData method takes a DamageEffectData object and returns a DamageEffect
object. It consists of creating an object, assigning values, and returning the object. The other method is
the override of the Apply method. First there is a local variable, amount, that holds the amount of
damage that will be inflicted set to the modifier field. Then there is a for loop that loops
numberOfDice times. Each pass through the loop adds the result of rolling dieType. An effect will
always do at least at least 1 point so if the amount is less than 1 I set the amount to 1. If you specify
numberOfDice to be zero then modifer will be inflicted allowing a specific amount of damage to be
inflicted. Finally there is a switch statement on attackType. If healType is Health then I call the
Damage method of Health for the entity passed in. I do similar for the mana and stamina cases. If you
recall, from way back when, the Damage method will subtract the value passed in from the current
value and if the value is negative the current value will be set to 0.

I think I'm going to end this tutorial here. I wanted to flesh out classes related to spells and start on the
classes related to effects. Things are starting to take form but there is a long way to go yet. I encourage
you to visit the news page of my site, XNA Game Programming Adventures , for the latest news on my
tutorials.

Good luck in your game programming adventures!

Jamie McMahon

http://xnagpa.net/news.html
http://xnagpa.net/news.html

