
XNA 4.0 RPG Tutorials

Part 27

Updating Components and Talents

I'm writing these tutorials for the new XNA 4.0 framework. The tutorials will make more sense if they
are read in order. You can find the list of tutorials on the XNA 4.0 RPG tutorials page of my web site. I
will be making my version of the project available for download at the end of each tutorial. It will be
included on the page that links to the tutorials.

The first thing that I want to update is the Player component. Right now the sprite moves at a constant
speed. If you were to run your game on a slower computer than yours the sprite will move slower. It is
also possible that the sprite will move faster on a faster computer. This is a little more unlikely because
an XNA game will not, by default, run at more than 60 frames per second. If the game was only
running at 30 frames per second the slow down would be much more noticeable. Luckily this is an easy
fix. You determine how many units you want the sprite to travel in 1 second and you the multiply that
by the elapsed time in each frame there is movement. The first step is to update the Update method of
the Player component. Modify that method as follows.

public void Update(GameTime gameTime)
{
 camera.Update(gameTime);
 Sprite.Update(gameTime);

 if (InputHandler.KeyReleased(Keys.PageUp) ||
 InputHandler.ButtonReleased(Buttons.LeftShoulder, PlayerIndex.One))
 {
 camera.ZoomIn();
 if (camera.CameraMode == CameraMode.Follow)
 camera.LockToSprite(Sprite);
 }
 else if (InputHandler.KeyReleased(Keys.PageDown) ||
 InputHandler.ButtonReleased(Buttons.RightShoulder, PlayerIndex.One))
 {
 camera.ZoomOut();
 if (camera.CameraMode == CameraMode.Follow)
 camera.LockToSprite(Sprite);
 }

 Vector2 motion = new Vector2();

 if (InputHandler.KeyDown(Keys.W) ||
 InputHandler.ButtonDown(Buttons.LeftThumbstickUp, PlayerIndex.One))
 {
 Sprite.CurrentAnimation = AnimationKey.Up;
 motion.Y = -1;
 }
 else if (InputHandler.KeyDown(Keys.S) ||
 InputHandler.ButtonDown(Buttons.LeftThumbstickDown, PlayerIndex.One))
 {
 Sprite.CurrentAnimation = AnimationKey.Down;
 motion.Y = 1;
 }

 if (InputHandler.KeyDown(Keys.A) ||
 InputHandler.ButtonDown(Buttons.LeftThumbstickLeft, PlayerIndex.One))

 {
 Sprite.CurrentAnimation = AnimationKey.Left;
 motion.X = -1;
 }
 else if (InputHandler.KeyDown(Keys.D) ||
 InputHandler.ButtonDown(Buttons.LeftThumbstickRight, PlayerIndex.One))
 {
 Sprite.CurrentAnimation = AnimationKey.Right;
 motion.X = 1;
 }

 if (motion != Vector2.Zero)
 {
 Sprite.IsAnimating = true;
 motion.Normalize();

 Sprite.Position += motion * Sprite.Speed * (float)gameTime.ElapsedGameTime.TotalSeconds;
 Sprite.LockToMap();

 if (camera.CameraMode == CameraMode.Follow)
 camera.LockToSprite(Sprite);
 }
 else
 {
 Sprite.IsAnimating = false;
 }

 if (InputHandler.KeyReleased(Keys.F) ||
 InputHandler.ButtonReleased(Buttons.RightStick, PlayerIndex.One))
 {
 camera.ToggleCameraMode();
 if (camera.CameraMode == CameraMode.Follow)
 camera.LockToSprite(Sprite);
 }

 if (camera.CameraMode != CameraMode.Follow)
 {
 if (InputHandler.KeyReleased(Keys.C) ||
 InputHandler.ButtonReleased(Buttons.LeftStick, PlayerIndex.One))
 {
 camera.LockToSprite(Sprite);
 }
 }

}

The change is in the if statement where I check to see if the motion is not the zero vector. I cast the
TotalSeconds property of gameTime.ElapsedGameTime to a float and multiply the Speed property
of Sprite by it. If you were to run the game now the sprite would really crawl. You need to update the
Speed property of the sprite to an appropriate value. I did that in the AnimatedSprite class. What I did
was increase the speed field and the Speed property. Change the speed field and Speed property to the
following.

float speed = 200.0f;

public float Speed
{
 get { return speed; }
 set { speed = MathHelper.Clamp(speed, 1.0f, 400.0f); }
}

I decided on those values after trying different values. At 200 units per second the sprite moves at a
good pace and seems appropriate for the game. At 400 units per second the sprite was really moving.
You probably don't want to go much higher than that. Testing that the sprite is moving at a constant rate
can be achieved easily. What you can do is set the IsFixedTimeStep property of the Game1 class to

false and the SynchronizeWithVertivalRetrace property of the GraphicsDevice to false. Change the
constructor of the Game1 class to the following.

public Game1()
{
 graphics = new GraphicsDeviceManager(this);

 graphics.PreferredBackBufferWidth = screenWidth;
 graphics.PreferredBackBufferHeight = screenHeight;

 ScreenRectangle = new Rectangle(
 0,
 0,
 screenWidth,
 screenHeight);

 Content.RootDirectory = "Content";

 Components.Add(new InputHandler(this));

 stateManager = new GameStateManager(this);
 Components.Add(stateManager);

 TitleScreen = new TitleScreen(this, stateManager);
 StartMenuScreen = new StartMenuScreen(this, stateManager);
 GamePlayScreen = new GamePlayScreen(this, stateManager);
 CharacterGeneratorScreen = new CharacterGeneratorScreen(this, stateManager);
 LoadGameScreen = new LoadGameScreen(this, stateManager);
 SkillScreen = new GameScreens.SkillScreen(this, stateManager);

 stateManager.ChangeState(TitleScreen);

 this.IsFixedTimeStep = false;
 graphics.SynchronizeWithVerticalRetrace = false;
}

Now if you build and run the game the sprite moves at the same rate as before the change. It is good
practice to try and have your game run at the same speed across all computers. You may find if you
create an XBOX 360 project from a Windows game that the game is very sluggish. That is because
your computer is usually much faster than an XBOX 360, especially if you have a newer computer. I
would suggest when you are creating a game to use this. It is a good way to have your game run the
same across all computers.

I've been considering the next change for a while now. I've been considering moving the classes in the
RpgLibrary into the XRpgLibrary project. The reason I didn't want to is that there would be a lot of
classes in one project and organization would suffer. The reason I wanted to was to reduce the amount
of dependencies. In the end I think that reducing the dependencies is worth the hit in organization.

The first step is to copy things from the RpgLibrary to the XRpgLibrary. Right click the
ConversationClasses folder in the RpgLibary and select Copy. Right click the XRpgLibrary and
select Paste. Repeat those steps with the QuestClasses, SkillClasses, SpellClasses, TalentClasses and
TrapClasses folders. Now repeat the process with the CharacterClasses, ItemClasses, and
WorldClasses folders. In the pop up box that appears for these select Yes. Select the Mechanic.cs,
Modifier.cs, and RolePlayingGame.cs files in the RpgLibrary and copy them to the XRpgLibrary
project as well.

Now expand the References node in the RpgEditor project and delete the RpgLibrary reference.Do
the same for the References node in the EyesOfTheDragonContent project. Right click the

References node in the EyesOfTheDragonContent project and select Add Reference. From the
Project tab select the XRpgLibrary. The last step is to right click the RpgLibrary project and select
Remove to remove the project.

What I'm going to add next is add some code to count the frames per second. This will give you an idea
of how changes you make to the game affect performance. If the frames per second drop to a really low
value you will know that a change you made has made a performance hit. The first step is to add a new
field region with the other field regions in the Game1 class.

#region Frames Per Second Field Region

private float fps;
private float updateInterval = 1.0f;
private float timeSinceLastUpdate = 0.0f;
private float frameCount = 0;

#endregion

You measure frames per second in the Draw method. Change the Draw method of the Game1 class to
the following.

protected override void Draw(GameTime gameTime)
{
 GraphicsDevice.Clear(Color.CornflowerBlue);

 base.Draw(gameTime);

 float elapsed = (float)gameTime.ElapsedGameTime.TotalSeconds;
 frameCount++;
 timeSinceLastUpdate += elapsed;

 if (timeSinceLastUpdate > updateInterval)
 {
 fps = frameCount / timeSinceLastUpdate;
#if XBOX360
 System.Diagnostics.Debug.WriteLine("FPS: " + fps.ToString());
#else
 this.Window.Title = "FPS: " + fps.ToString();
#endif
 frameCount = 0;
 timeSinceLastUpdate -= updateInterval;
 }
}

The preprocessor directives may not line up like they are in the code that I pasted. The first thing the
new code does is get the amount of time that has elapsed in seconds. This is going to be a small value
that will eventually add up to approximately 1. I then increase the frameCount variable that holds the
number of frames that have elapsed. The timeSinceLastUpdate holds the amount of time since the last
update of the frames per second. The if statement check if timeSinceLastUpdate is greater than the
updateInterval field, which is set to 1.0f. If it is I set the fps field to frameCount divided by
timeSinceLastUpdate. Then if the target platform is the Xbox 360 I write the fps value using the
System.Diagnostics.Debug.WriteLine method. This will write the fps value to the output window in
Visual Studio. If it is not the Xbox 360 I set the Title property of the window to be the fps value. The
last step is to set frameCount back to 0 and subtract updateInterval from timeSinceLastUpdate.

The last thing I'm going to work on in this tutorial is flesh out the talents a little. There will be three
types of talents. Talents will be passive, sustained, or activated. A passive talent is a talent that requires
no stamina to be available and is always active. A sustained talent is a talent that requires stamina to

activate and once activated is active until it is deactivated. An activated talent costs a certain amount of
stamina to activate produces a specific effect. Spells will work in a similar way except they require
mana instead of stamina.

For this we are going to need some new classes for effects. There will be different types of effects. So,
what types of effects are there. An effect may modify a primary attribute or a secondary attribute.
Secondary attributes are attributes that are derived from the primary attributes like hit points. Besides
affecting attributes spells and talents may change the characters status like paralyzing them for a while.
Right click the XRpgLibrary projects, select Add and then New Folder. Name this new folder
EffectClasses. To this folder you are going to add three class. Right click the EffectClasses folder,
select Add and then Class. Name this class BaseEffect. Repeat the process and name the classes
BaseEffectData and BaseEffectDataManager. For now these are template classes for now and the
code for them follows next.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.EffectClasses
{
 public enum EffectType { Damage, Heal }

 public class BaseEffect
 {
 #region Field Region
 #endregion

 #region Property Region
 #endregion

 #region Constructor Region
 #endregion

 #region Method Region
 #endregion

 #region Virtual Method Region
 #endregion
 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.EffectClasses
{
 public class BaseEffectData
 {
 #region Field Region
 #endregion
 #region Property Region
 #endregion

 #region Constructor Region
 #endregion

 #region Method Region
 #endregion

 #region Virtual Method Region
 #endregion

 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.EffectClasses
{
 public class BaseEffectDataManager
 {
 #region Field Region
 #endregion

 #region Property Region
 #endregion

 #region Constructor Region
 #endregion

 #region Method Region
 #endregion

 #region Virtual Method Region
 #endregion
 }
}

I used BaseEffect rather than Effect because XNA already contains a classed called Effect that is used
in 3D rendering. I just wanted to avoid confusion with that class. You will notice that I changed the
namespace from XRpgLibrary to just RpgLibrary. I did that to try and keep the XNA part and the
mechanics part separate. I added an enumeration to the BaseEffect class called EffectType. This is also
a place holder but I added two values to it: Damage and Heal. There purpose I think is obvious.
Damage will cause damage to a target and Heal will heal a target. I will be adding in more down the
road.

The next class that I'm going to work on is the TalentData class. Change the TalentData class to the
following. Update the code for the TalentData class to the following.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.TalentClasses
{
 public enum TalentType { Passive, Sustained, Activated }

 public class TalentData
 {
 #region Field Region

 public string Name;
 public string[] AllowedClasses;
 public Dictionary<string, int> AttributeRequirements;
 public string[] TalentPrerequisites;
 public int LevelRequirement;
 public TalentType TalentType;
 public int ActivationCost;
 public string[] Effects;

 #endregion

 #region Property Region

 #endregion

 #region Constructor Region

 public TalentData()
 {
 AttributeRequirements = new Dictionary<string, int>();
 }

 #endregion

 #region Method Region
 #endregion

 #region Virtual Method region

 public override string ToString()
 {
 string toString = Name;

 foreach (string s in AllowedClasses)
 toString += ", " + s;

 foreach (string s in AttributeRequirements.Keys)
 toString += ", " + s + "+" + AttributeRequirements[s].ToString();

 foreach (string s in TalentPrerequisites)
 toString += ", " + s;

 toString += ", " + LevelRequirement.ToString();

 toString += ", " + TalentType.ToString();
 toString += ", " + ActivationCost.ToString();

 foreach (string s in Effects)
 toString += ", " + s;

 return toString;
 }

 #endregion
 }
}

There are several fields associated with the TalentData class. The first is Name, the name of the talent.
Next is an array of strings, AllowedClasses, that holds the classes that can learn the talent. I did this
because a rogue or a fighter can, for instance, learn archery talents. Next there is a dictionary with
string keys and integer values, AttributeRequirements, that holds any attribute values that a character
must have to learn the talent. There is then an array of strings, TalentPrerequisites, that will hold any
talents that must be learned before this talent can be learned. The next field, LevelRequirement, will
hold what level a character must be to learn the talent. In this way a low level character can't learn a
very powerful talent that will unbalance your game, whereas a high level character may need that talent
against the stronger foes. The field TalentType is the type of talent, whether it is passive, sustained, or
activated. The next one, ActivationCost, is the cost required to activate the talent. The last, Effects, is
an array of strings that holds the effects that the talent may cause.

The constructor just creates a new Dictionary<string, int> for the AttributeRequirements field. The
one method, ToString, just creates a string that represents a TalentData object and returns it.

Before I get to the Talent class I want to add a static method to the Mechanics class. This method will
return an attribute from an entity based on the name of the attribute. This will be helpful in many
places. Add the following static method to the Mechanics class.

public static int GetAttributeByString(Entity entity, string attribute)
{
 int value = 0;

 switch (attribute.ToLower())
 {
 case "strength":
 value = entity.Strength;
 break;
 case "dexterity":
 value = entity.Dexterity;
 break;
 case "cunning":
 value = entity.Cunning;
 break;
 case "willpower":
 value = entity.Willpower;
 break;
 case "magic":
 value = entity.Magic;
 break;
 case "constitution":
 value = entity.Constitution;
 break;
 }

 return value;
}

It is a rather simple method. I set the value variable to be 0. There is then a switch statement on the
value of the attribute parameter converted to a lower case string. There is then a case for each of the
primary attributes. The case sets the value variable to be the value of the appropriate attribute. Finally I
return the value.

Now I'm going to add a few things to the Talent class. Change the code for the Talent class to the
following.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using RpgLibrary.CharacterClasses;

namespace RpgLibrary.TalentClasses
{
 public class Talent
 {
 #region Field Region

 string name;
 List<string> allowedClasses;
 Dictionary<string, int> attributeRequirements;
 List<string> talentPrerequisites;
 int levelRequirement;
 TalentType talentType;
 int activationCost;
 List<string> effects;

 #endregion

 #region Property Region

 public string Name
 {
 get { return name; }

 }

 public List<string> AllowedClasses
 {
 get { return allowedClasses; }
 }

 public Dictionary<string, int> AttributeRequirements
 {
 get { return attributeRequirements; }
 }

 public List<string> TalentPrerequisites
 {
 get { return talentPrerequisites; }
 }

 public int LevelRequirement
 {
 get { return levelRequirement; }
 }

 public TalentType TalentType
 {
 get { return talentType; }
 }

 public int ActivationCost
 {
 get { return activationCost; }
 }

 public List<string> Effects
 {
 get { return effects; }
 }

 #endregion

 #region Constructor Region

 private Talent()
 {
 allowedClasses = new List<string>();
 attributeRequirements = new Dictionary<string, int>();
 talentPrerequisites = new List<string>();
 effects = new List<string>();
 }

 #endregion

 #region Method Region

 public static Talent FromTalentData(TalentData data)
 {
 Talent talent = new Talent();

 talent.name = data.Name;

 foreach (string s in data.AllowedClasses)
 talent.allowedClasses.Add(s.ToLower());

 foreach (string s in data.AttributeRequirements.Keys)
 talent.attributeRequirements.Add(
 s.ToLower(),
 data.AttributeRequirements[s]);

 foreach (string s in data.TalentPrerequisites)

 talent.talentPrerequisites.Add(s);

 talent.levelRequirement = data.LevelRequirement;
 talent.talentType = data.TalentType;
 talent.activationCost = data.ActivationCost;

 foreach (string s in data.Effects)
 talent.Effects.Add(s);

 return talent;
 }

 public static bool CanLearn(Entity entity, Talent talent)
 {
 bool canLearn = true;

 if (entity.Level < talent.LevelRequirement)
 canLearn = false;

 string entityClass = entity.EntityClass.ToLower();

 if (!talent.AllowedClasses.Contains(entityClass))
 canLearn = false;

 foreach (string s in talent.AttributeRequirements.Keys)
 {
 if (Mechanics.GetAttributeByString(entity, s) < talent.AttributeRequirements[s])
 {
 canLearn = false;
 break;
 }
 }

 foreach (string s in talent.TalentPrerequisites)
 {
 if (!entity.Talents.ContainsKey(s))
 {
 canLearn = false;
 break;
 }
 }

 return canLearn;
 }

 #endregion

 #region Virtual Method Region
 #endregion
 }
}

First thing that I did was include a using statement to bring the Entity class into scope in this class.
There are fields that match the fields from the TalentData class as well as get only properties to expose
their values. Instead of arrays I use the generic List<T> collection to hold the values. There is a private
constructor that takes no parameters. It creates new collections for the fields are collections. You don't
use a constructor to create Talent objects you instead use the static method FromTalentData.

The FromTalentData method takes a TalentData parameter called data. The first step is to create a
new Talent object using the private constructor. In a foreach loop I then loop through all of the entries
in the AllowedClasses field of the TalentData and add each item converted to a lower case string to
the allowedClasses field of the Talent object. I loop over the keys in the AttributeRequirements in
data and add the key converted to a lower case string with the value to attributeRequirements in

talent. I do the same with TalentPrerequisites and talentPrerequisites for data and talent. There are
then three straight assignments from data to talent. There is one last loop that assigns values from the
Effects in data to effects in talent. I then return the talent variable.

The last method, CanLearn, is also a static method that takes an Entity that is trying to learn the talent
and a Talent that represents the talent to be learned. There is a local variable canLearn that is set to
true initially. There are then a number of checks to see if all of the prerequisites for the talent have been
learned. If one of the checks fails canLearn will be set to false. The first check makes sure that the
level of the entity passed in is not less than the required level. I then get the name of the class for the
entity and convert it to a lower case string. I then use the Contains method of List<T> to see if the
class is not in the list of allowed classes. There is next a foreach loop that loops through all of the keys
in AttributeRequirements. I then use the GetAttributeByString method passing in the entity and the
key to get the value of the attribute of the entity and compare it to the value in the dictionary for the
key. If it is less than the minimum level I set can learn to false and break out of the loop. The last step is
to loop through all of the prerequisites for the talent. If the talent is not I set canLearn to false and
break out of the loop.

I think I'm going to end this tutorial here. I wanted to update a few things and add more on talents to
the game. Things are starting to take form but there is a long way to go yet. I encourage you to visit the
news page of my site, XNA Game Programming Adventures , for the latest news on my tutorials.

Good luck in your game programming adventures!

Jamie McMahon

