
XNA 4.0 RPG Tutorials

Part 26

More On Skills

I'm writing these tutorials for the new XNA 4.0 framework. The tutorials will make more sense if they
are read in order. You can find the list of tutorials on the XNA 4.0 RPG tutorials page of my web site. I
will be making my version of the project available for download at the end of each tutorial. It will be
included on the page that links to the tutorials.

In this tutorial I'm going to work on the game to give you a break from the editors that I think you
deserve. What I want to do first is to make a change to the way the screen manager works. Instead of
switching directly to a new screen I want to add a transition period. This transition period will give the
state a chance to finish off a few tasks that will leave it in a better state and help prevent cascading. It
has to do with the control manager and the fact that I'm using events. The control manager should
really be threaded but I don't want to go into that in these tutorials. Having a transition state will allow
it to finish off tasks before switching to a new state.

First, make the EyesOfTheDragon project the start up project by right clicking it in the solution
explorer and selecting Set As StartUp Project. The first thing that I did was add an enumeration to the
GameStateManager class at the namespace level. Doing things makes it accessible with out having to
reference a class name. Add this enumeration just above the class declaration for GameStateManager.

public enum ChangeType { Change, Pop, Push }

The enumeration has values for each of the three types of state changes. You can change states, pop the
current state off the stack, and push a new state on top of the stack. It will be used to determine how to
respond to switching states.

I added changing states to the BaseGameState class. The changes are rather extensive so I will give
you the code for the entire class. Change the BaseGameState to the following.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using XRpgLibrary;
using XRpgLibrary.Controls;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Content;
using Microsoft.Xna.Framework.Graphics;

namespace EyesOfTheDragon.GameScreens
{
 public abstract partial class BaseGameState : GameState
 {
 #region Fields region

 protected Game1 GameRef;

http://xnagpa.net/xnarpg4tutorials.html

 protected ControlManager ControlManager;

 protected PlayerIndex playerIndexInControl;

 protected BaseGameState TransitionTo;

 protected bool Transitioning;

 protected ChangeType changeType;

 protected TimeSpan transitionTimer;
 protected TimeSpan transitionInterval = TimeSpan.FromSeconds(0.5);

 #endregion

 #region Properties region
 #endregion

 #region Constructor Region

 public BaseGameState(Game game, GameStateManager manager)
 : base(game, manager)
 {
 GameRef = (Game1)game;

 playerIndexInControl = PlayerIndex.One;
 }

 #endregion

 #region XNA Method Region

 public override void Initialize()
 {
 base.Initialize();
 }

 protected override void LoadContent()
 {
 ContentManager Content = Game.Content;

 SpriteFont menuFont = Content.Load<SpriteFont>(@"Fonts\ControlFont");
 ControlManager = new ControlManager(menuFont);

 base.LoadContent();
 }

 public override void Update(GameTime gameTime)
 {
 if (Transitioning)
 {
 transitionTimer += gameTime.ElapsedGameTime;

 if (transitionTimer >= transitionInterval)
 {
 Transitioning = false;
 switch (changeType)
 {
 case ChangeType.Change:
 StateManager.ChangeState(TransitionTo);
 break;
 case ChangeType.Pop:
 StateManager.PopState();
 break;
 case ChangeType.Push:
 StateManager.PushState(TransitionTo);
 break;
 }
 }

 }

 base.Update(gameTime);
 }

 public override void Draw(GameTime gameTime)
 {
 base.Draw(gameTime);
 }

 #endregion

 #region Method Region

 public virtual void Transition(ChangeType change, BaseGameState gameState)
 {
 Transitioning = true;
 changeType = change;
 TransitionTo = gameState;
 transitionTimer = TimeSpan.Zero;
 }

 #endregion
 }
}

What I did was add a few fields to BaseGameState. The first is of type BaseGameState and is the
state that you are transitioning to. It can be set to null if you are popping a state. It isn't set directly
though, I set it with a new virtual method that I created that I will get to in a bit. There is also a bool
field, Transitioning, that determines if the screen is transitioning or not. The changeType field will
hold what the change is. The transitionTimer field will be used to tell when the transition period is
over and is a TimeSpan. The last field, transitionInterval, holds how long until the transition
happens. I set it to be half a second initially.

In the Update method is where I handle the transition logic. I check to see if the Transitioning field is
true. If it is I increment the transitionTimer field and then check to see if it is great than or equal to the
transitionInterval field. If it greater than the transition interval I set the Transitioning field to be
false. There is then a switch statement on the changeType field. For each of the cases I call an
appropriate method of the GameStateManager to change the state.

The new method is the Transition method and it takes two parameters. The first is a ChangeType
parameter and the second is a BaseGameState parameter. If the ChangeType is Pop you can pass in
null for the BaseGameState parameter. I set the Transitioning field to true, changeType to the value
passed in, transitionTo to the value passed in, and set transitionTimer to TimeSpan.Zero.

Implementing this in the game will require changing the calls that change the state to call the new
Transition method. I will start with the TitleScreen class. Change the startLabel_Selected method to
the following.

private void startLabel_Selected(object sender, EventArgs e)
{
 Transition(ChangeType.Push, GameRef.StartMenuScreen);
}

As you can see before I was pushing the StartMenuScreen onto the stack using the game state
manager. Instead I call the Transition method with ChangeType.Push and the StartMenuScreen
from the Game1 class.

In the StartMenuScreen class you need to change the menuItem_Selected method. It will be called
when a menu item is selected. Change that method to the following.

private void menuItem_Selected(object sender, EventArgs e)
{
 if (sender == startGame)
 Transition(ChangeType.Push, GameRef.CharacterGeneratorScreen);

 if (sender == loadGame)
 Transition(ChangeType.Push, GameRef.LoadGameScreen);

 if (sender == exitGame)
 GameRef.Exit();
}

There is only one change in the CharacterGeneratorScreen and that is in the linkLabel1_Selected
method. Change that method to the following.

void linkLabel1_Selected(object sender, EventArgs e)
{
 InputHandler.Flush();

 CreatePlayer();
 CreateWorld();

 GameRef.SkillScreen.SkillPoints = 25;
 Transition(ChangeType.Change, GameRef.SkillScreen);
}

In the SkillScreen class you need to change the acceptLabel_Selected method. Change that method to
the following.

void acceptLabel_Selected(object sender, EventArgs e)
{
 undoSkill.Clear();

 Transition(ChangeType.Change, GameRef.GamePlayScreen);
}

That leaves the LoadGameScreen. In that class there are two methods that need to be updated. They
are the exitLinkLabel_Selected and loadListBox_Selected method. Change those methods to the
following.

void exitLinkLabel_Selected(object sender, EventArgs e)
{
 Transition(ChangeType.Pop, null);
}

void loadListBox_Selected(object sender, EventArgs e)
{
 loadLinkLabel.HasFocus = true;
 ControlManager.AcceptInput = true;

 Transition(ChangeType.Change, GameRef.GamePlayScreen);

 CreatePlayer();
 CreateWorld();
}

I'm now going to revisit skills for the rest of this tutorial. After looking at the numbers I was using it
would be too easy for a character to get a 100 ranking in a skill. What I intend to do is instead of

starting with 25 skill points and 10 every level drop that down to 10 skill points to start with and 5
more every level. I've also been thinking about adding a configuration file that you can create to set
values like this in an editor and read them in at run time. It will make personalizing things a little easier.

To get started I'm going to modify the Modifier structure. I'm going to make it a class and add in a
string field that will tell what is being modified. I was going to place a Modifier field in each of the
Skill, Talent, and Spell classes. Instead in the Entity class I will have a fields that contains all of the
modifiers for one type. There will be a List<Modifier> for the skills, talents, and spells an entity has
learned. Change the code of the Modifier structure to the following.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary
{
 public class Modifier
 {
 #region Field Region

 public string Modifying;
 public int Amount;
 public int Duration;
 public TimeSpan TimeLeft;

 #endregion

 #region Constructor Region

 public Modifier(string modifying, int amount)
 {
 Modifying = modifying;
 Amount = amount;
 Duration = -1;
 TimeLeft = TimeSpan.Zero;
 }

 public Modifier(string modifying, int amount, int duration)
 {
 Modifying = modifying;
 Amount = amount;
 Duration = duration;
 TimeLeft = TimeSpan.FromSeconds(duration);
 }

 #endregion

 #region Method Region

 public void Update(TimeSpan elapsedTime)
 {
 if (Duration == -1)
 return;

 TimeLeft -= elapsedTime;
 if (TimeLeft.TotalMilliseconds < 0)
 {
 TimeLeft = TimeSpan.Zero;
 Amount = 0;
 }
 }

 #endregion

 #region Virtual Method Region

 #endregion
 }
}

I just added in a new field, Modifying, that says what is being modified. I change the two constructors
to take a string parameter for what is being modified and set the field to the value passed in.

The next thing to do is to flesh out the Skill class. Update the Skill class to the following.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using RpgLibrary.CharacterClasses;

namespace RpgLibrary.SkillClasses
{
 public enum DifficultyLevel
 {
 Master = -25,
 Expert = -10,
 Improved = -5,
 Normal = 0,
 Easy = 10,
 }

 public class Skill
 {
 #region Field Region

 string skillName;
 string primaryAttribute;
 readonly Dictionary<string, int> classModifiers;

 int skillValue;

 #endregion

 #region Property Region

 public string SkillName
 {
 get { return skillName; }
 }

 public int SkillValue
 {
 get { return skillValue; }
 }

 public string PrimaryAttribute
 {
 get { return primaryAttribute; }
 }

 public Dictionary<string, int> ClassModifiers
 {
 get { return classModifiers; }
 }

 #endregion

 #region Constructor Region

 private Skill()
 {
 skillName = "";

 primaryAttribute = "";
 classModifiers = new Dictionary<string, int>();
 skillValue = 0;
 }

 #endregion

 #region Method Region

 public void IncreaseSkill(int value)
 {
 skillValue += value;

 if (skillValue > 100)
 skillValue = 100;
 }

 public void DecreaseSkill(int value)
 {
 skillValue -= value;

 if (skillValue < 0)
 skillValue = 0;
 }

 public static Skill FromSkillData(SkillData data)
 {
 Skill skill = new Skill();

 skill.skillName = data.Name;
 skill.skillValue = 0;

 foreach (string s in data.ClassModifiers.Keys)
 {
 skill.classModifiers.Add(s, data.ClassModifiers[s]);
 }

 return skill;
 }

 public static int AttributeModifier(int attribute)
 {
 int result = 0;

 if (attribute < 25)
 result = 1;
 else if (attribute < 50)
 result = 2;
 else if (attribute < 75)
 result = 3;
 else if (attribute < 90)
 result = 4;
 else if (attribute < 95)
 result = 5;
 else
 result = 10;

 return result;
 }

 #endregion

 #region Virtual Method region
 #endregion
 }
}

The first thing I did was tweak the numbers for the DifficultyLevel enum. With the values I had it
could be impossible for any character to perform a skill that was ranked at Master level. I added in

four fields. Two string fields, one for the name of the skill and one for the primary attribute associated
with the skill. I also added in a Dictionary<string, int> that holds the modifiers for the different
classes and the skill. The last is an integer field for the value of the skill. There a public read only, or
get only, properties to expose the values of the fields.

There is a private constructor for this class. It initializes the values of the fields to known states. Instead
of a public constructor I will create Skill objects using a public static method and the SkillData class.

I included two public methods, IncreaseSkill and DecreaseSkill, that increase and decrease the value
of a skill respectively. The IncreaseSkill method makes sure that the base value of a skill never goes
above 100. Similarly, the DecreaseSkill method makes sure that the base value of a skill never goes
below 0.

The next method is the static method, FromSkillData, that takes a SkillData object. This method
creates a new Skill object. It sets the skillName field to the Name of the SkillData object. I initialize
the skillValue field to 0. In a foreach loop I loop through all of the keys in the ClassModifiers
dictionary. I add each entry to the Dictionary<string, int> in the Skill class. I finally return the Skill
object.

The last method that I added is also a public static method, AttributeModifier, that takes an integer
value. This method returns a modifier for a skill based on a character's attribute. I have a local variable,
result, that is initially assigned to 0. Then there is a set of chained if-else-if statements that will set the
result local variable. The values will need to be tweaked more than likely to make the game balanced.
At the end of the method I return the result variable.

I add a static method to the Mechanics class to determine if using a skill is successful or not. The way I
evaluate it is like this. You take the base value of the skill, add in the difficulty associated with trying to
use the skill, and add any modifiers to the attempt. If the roll of a d100 is less than or equal to that
number the attempt succeeds. Add the following method to the Mechanics class.

public static bool UseSkill(Skill skill, Entity entity, DifficultyLevel difficulty)
{
 bool result = false;

 int target = skill.SkillValue + (int)difficulty;

 foreach (string s in skill.ClassModifiers.Keys)
 if (s == entity.EntityClass)
 target += skill.ClassModifiers[s];

 foreach (Modifier m in entity.SkillModifiers)
 {
 if (m.Modifying == skill.SkillName)
 {
 target += m.Amount;
 }
 }

 string lower = skill.PrimaryAttribute.ToLower();

 switch (lower)
 {
 case "strength":
 target += Skill.AttributeModifier(entity.Strength);
 break;
 case "dexterity":
 target += Skill.AttributeModifier(entity.Dexterity);

 break;
 case "cunning":
 target += Skill.AttributeModifier(entity.Cunning);
 break;
 case "willpower":
 target += Skill.AttributeModifier(entity.Willpower);
 break;
 case "magic":
 target += Skill.AttributeModifier(entity.Magic);
 break;
 case "constitution":
 target += Skill.AttributeModifier(entity.Constitution);
 break;
 }

 if (Mechanics.RollDie(DieType.D100) <= target)
 result = true;

 return result;
}

The method takes as parameters the Skill being used, the Entity using the skill, and a DifficultyLevel
for the attempt. The first thing I do is declare a local variable result set to false that determines if the
attempt was successful or not. I then declare a local variable target that will be the target number of the
attempt. It is initially set to the SkillValue property of the skill plus the DifficultyLevel passed in.
There is then a foreach loop that loops through the Keys of the ClassModifiers dictionary of the skill.
If the Entity's class is one of the keys I add the value of the ClassModifiers entry in the dictionary.
There is a second foreach loop that loops through all of the modifiers in the SkillModifiers collection
of the entity. If the Modifying property of the Modifier is the SkillName property of the skill I add the
Amount property of the modifier to target. I then get the PrimaryAttribute of the skill as a lower
case string. In a switch I add the AttributeModifier result of the Skill class to target based on the
attribute of the Entity. I use the RollDie method of the Mechanics class to roll a D100 and compare it
to target. If it is less than or equal to target then result is set to true. Since result was initially set to
false there is no need to include an else clause to set result to false.

The last thing I'm going to do in this tutorial is update the SkillScreen class for assigning points to a
skill. I first want to update the CreatePlayer method of the CharacterGeneratorScreen. What I want
to do is add skills to the entity. Update the CreatePlayer method to the following. Also add a using
statement for the RpgLibrary.Skills classes.

using RpgLibrary.SkillClasses;

private void CreatePlayer()
{
 Dictionary<AnimationKey, Animation> animations = new Dictionary<AnimationKey, Animation>();

 Animation animation = new Animation(3, 32, 32, 0, 0);
 animations.Add(AnimationKey.Down, animation);

 animation = new Animation(3, 32, 32, 0, 32);
 animations.Add(AnimationKey.Left, animation);

 animation = new Animation(3, 32, 32, 0, 64);
 animations.Add(AnimationKey.Right, animation);

 animation = new Animation(3, 32, 32, 0, 96);
 animations.Add(AnimationKey.Up, animation);

 AnimatedSprite sprite = new AnimatedSprite(
 characterImages[genderSelector.SelectedIndex, classSelector.SelectedIndex],
 animations);

 EntityGender gender = EntityGender.Male;

 if (genderSelector.SelectedIndex == 1)
 gender = EntityGender.Female;

 Entity entity = new Entity(
 "Pat",
 DataManager.EntityData[classSelector.SelectedItem],
 gender,
 EntityType.Character);

 foreach (string s in DataManager.SkillData.Keys)
 {
 Skill skill = Skill.FromSkillData(DataManager.SkillData[s]);
 entity.Skills.Add(s, skill);
 }

 Character character = new Character(entity, sprite);

 GamePlayScreen.Player = new Player(GameRef, character);
}

What I added was a foreach loop that loops through all the keys in the SkillData dictionary in the
DataManager component. I create a new Skill using the FromSkillData method that I created earlier
in the tutorial. I then add the skill to the Skills dictionary of the entity.

There were a lot of changes to the SkillScreen so I'm going to give you the code for the entire class.
Update the SkillScreen to the following.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;
using Microsoft.Xna.Framework.Content;

using XRpgLibrary;
using XRpgLibrary.Controls;
using XRpgLibrary.CharacterClasses;

using RpgLibrary.SkillClasses;

using EyesOfTheDragon.Components;

namespace EyesOfTheDragon.GameScreens
{
 internal class SkillLabelSet
 {
 internal Label Label;
 internal Label SkillLabel;
 internal LinkLabel LinkLabel;
 internal int SkillValue;

 internal SkillLabelSet(Label label, Label skillLabel, LinkLabel linkLabel)
 {
 Label = label;
 SkillLabel = skillLabel;
 LinkLabel = linkLabel;
 SkillValue = 0;
 }
 }

 public class SkillScreen : BaseGameState

 {
 #region Field Region

 int skillPoints;
 int unassignedPoints;
 Character target;

 PictureBox backgroundImage;
 Label pointsRemaining;

 List<SkillLabelSet> skillLabels = new List<SkillLabelSet>();
 Stack<string> undoSkill = new Stack<string>();
 EventHandler linkLabelHandler;

 #endregion

 #region Property Region

 public int SkillPoints
 {
 get { return skillPoints; }
 set
 {
 skillPoints = value;
 unassignedPoints = value;
 }
 }

 #endregion

 #region Constructor Region

 public SkillScreen(Game game, GameStateManager manager)
 : base(game, manager)
 {
 linkLabelHandler = new EventHandler(addSkillLabel_Selected);
 }

 #endregion

 #region Method Region

 public void SetTarget(Character character)
 {
 target = character;

 foreach (SkillLabelSet set in skillLabels)
 {
 set.SkillValue = character.Entity.Skills[set.Label.Text].SkillValue;
 set.SkillLabel.Text = set.SkillValue.ToString();
 }
 }

 #endregion

 #region Virtual Method region
 #endregion

 #region XNA Method Region

 public override void Initialize()
 {
 base.Initialize();
 }

 protected override void LoadContent()
 {
 base.LoadContent();

 ContentManager Content = GameRef.Content;

 CreateControls(Content);
 }

 private void CreateControls(ContentManager Content)
 {
 backgroundImage = new PictureBox(
 Game.Content.Load<Texture2D>(@"Backgrounds\titlescreen"),
 GameRef.ScreenRectangle);
 ControlManager.Add(backgroundImage);

 Vector2 nextControlPosition = new Vector2(300, 150);

 pointsRemaining = new Label();
 pointsRemaining.Text = "Skill Points: " + unassignedPoints.ToString();
 pointsRemaining.Position = nextControlPosition;

 nextControlPosition.Y += ControlManager.SpriteFont.LineSpacing + 10f;

 ControlManager.Add(pointsRemaining);

 foreach (string s in DataManager.SkillData.Keys)
 {
 SkillData data = DataManager.SkillData[s];

 Label label = new Label();
 label.Text = data.Name;
 label.Type = data.Name;

 label.Position = nextControlPosition;

 Label sLabel = new Label();
 sLabel.Text = "0";

 sLabel.Position = new Vector2(
 nextControlPosition.X + 300,
 nextControlPosition.Y);

 LinkLabel linkLabel = new LinkLabel();
 linkLabel.TabStop = true;
 linkLabel.Text = "Add";
 linkLabel.Type = data.Name;

 linkLabel.Position = new Vector2(
 nextControlPosition.X + 390,
 nextControlPosition.Y);

 nextControlPosition.Y += ControlManager.SpriteFont.LineSpacing + 10f;

 linkLabel.Selected += addSkillLabel_Selected;

 ControlManager.Add(label);
 ControlManager.Add(sLabel);
 ControlManager.Add(linkLabel);

 skillLabels.Add(new SkillLabelSet(label, sLabel, linkLabel));
 }

 nextControlPosition.Y += ControlManager.SpriteFont.LineSpacing + 10f;

 LinkLabel undoLabel = new LinkLabel();
 undoLabel.Text = "Undo";
 undoLabel.Position = nextControlPosition;
 undoLabel.TabStop = true;
 undoLabel.Selected += new EventHandler(undoLabel_Selected);
 nextControlPosition.Y += ControlManager.SpriteFont.LineSpacing + 10f;

 ControlManager.Add(undoLabel);

 LinkLabel acceptLabel = new LinkLabel();

 acceptLabel.Text = "Accept Changes";
 acceptLabel.Position = nextControlPosition;
 acceptLabel.TabStop = true;
 acceptLabel.Selected += new EventHandler(acceptLabel_Selected);

 ControlManager.Add(acceptLabel);
 ControlManager.NextControl();
 }

 void acceptLabel_Selected(object sender, EventArgs e)
 {
 undoSkill.Clear();

 Transition(ChangeType.Change, GameRef.GamePlayScreen);
 }

 void undoLabel_Selected(object sender, EventArgs e)
 {
 if (unassignedPoints == skillPoints)
 return;

 string skillName = undoSkill.Peek();
 undoSkill.Pop();
 unassignedPoints++;

 foreach (SkillLabelSet set in skillLabels)
 {
 if (set.LinkLabel.Type == skillName)
 {
 set.SkillValue--;
 set.SkillLabel.Text = set.SkillValue.ToString();
 target.Entity.Skills[skillName].DecreaseSkill(1);
 }
 }

 pointsRemaining.Text = "Skill Points: " + unassignedPoints.ToString();
 }

 void addSkillLabel_Selected(object sender, EventArgs e)
 {
 if (unassignedPoints <= 0)
 return;

 string skillName = ((LinkLabel)sender).Type;
 undoSkill.Push(skillName);
 unassignedPoints--;

 // Update the skill points for the appropriate skill
 foreach (SkillLabelSet set in skillLabels)
 {
 if (set.LinkLabel.Type == skillName)
 {
 set.SkillValue++;
 set.SkillLabel.Text = set.SkillValue.ToString();
 target.Entity.Skills[skillName].IncreaseSkill(1);
 }
 }

 pointsRemaining.Text = "Skill Points: " + unassignedPoints.ToString();
 }

 public override void Update(GameTime gameTime)
 {
 ControlManager.Update(gameTime, PlayerIndex.One);
 base.Update(gameTime);
 }

 public override void Draw(GameTime gameTime)
 {
 GameRef.SpriteBatch.Begin();

 base.Draw(gameTime);

 ControlManager.Draw(GameRef.SpriteBatch);

 GameRef.SpriteBatch.End();
 }

 #endregion
 }
}

I removed the using statement for the System.IO name space as I no longer read in the file names for
the skills. I instead use the DataManager that I added to get the skill names. I did add a using
statement for the EyesOfTheDragon.Components and XRpgLibrary name spaces.

I updated the SkillLabelSet class. I added another Label to the class that is used to draw the points the
character has allocated. I also added an integer to hold the skill points that are allocated to a skill. I
modified the constructor to take another Label. The constructor assigns fields to values passed in and
sets SkillValue to 0.

I added on new field to the SkillScreen class, target, which is a Character. You will set this field with
the target character that you want to assign skill points to. At the moment there is just the one character
but eventually I will be moving to a party system where other characters may join the player character.
When one of those characters levels up you will be able to assign skill points to them.

I added a public method, SetTarget, that is used to set the target field. I first set the target field to the
value passed in. In a foreach loop I loop over all of the SkillLabelSet items. I set the SkillValue to the
SkillValue of the appropriate skill of the target passed in. I then update the Text property of SkillLabel
to be the SkillValue passed in.

There were many changes to the CreateControls method. I removed the code that loaded in the skills
using the Content Pipeline. I instead get the skills from the DataManager. It still creates a background
image and a Label that displays the unassigned points. The biggest difference is in the foreach loop. It
loops through all of the keys in the SkillData dictionary of the DataManager. There is a variable to
hold the appropriate SkillData called data. I create a new Label and set its Text and Type property to
be the Name of the SkillData item. I position it like before. I then create another Label and set its Text
property to “0” initially. I position it 300 pixels to the right of the first label. I then create a LinkLabel
like before but position it 390 pixels to the right of the first label. I subscribe to the Selected property
of the LinkLabel as well. I then add all three controls to the ControlManager. I also add an item to the
SkillLabelSet collection. The rest of the method continues on as before.

I also updated the undoLabel_Selected and addSkillLabel_Selected methods. Before there was a
comment in each method that you needed to update the skill points of the target. I now actually update
the skill points assigned to a skill.

In the undoLabel_Selected method I handle removing a previously assigned skill point. The new code
is a foreach loop that loops through all of the SkillLabelSet items in the collection. If the Type
property of the LinkLabel in the set is equal to the skillName that I got off the undoSkill stack I
reduce the SkillValue of the set item by 1. I update the Text property of the SkillLabel to show the
change. I also call the DecreaseSkill method of the appropriate skill of the target field.

The addSkillLabel_Selected method works the same way. I just increment instead of decrement. There
is a foreach loop that loops through all of the SkillLabelSet items in the collection. If the Type
property of the LinkLabel of the set is equal to the skillName variable, that I got from the LinkLabel
triggered the event, I increment SkillValue by 1, update the Text property, and call the IncreaseSkill
method passing in 1. Ideally you would want to add a check here that SkillValue doesn't go over the
maximum of 100. I will also mention that we are dealing with raw values. The character can assign up
to 100 raw points to a skill. Any modifiers for their class or primary attribute are extras and are not
applied in the raw skill points.

I will mention that the target field is a reference to the actual character. Any changes you do the the
target field will apply to the actual character. You really need to be careful when you are passing
references around. There is the potential for unwanted side effects. When you assign a different
character to the target field you are not working with the old value you are working with the new
value.

The last thing to do is to update the linkLabel1_Selected method in the CharacterGeneratorScreen
to pass in the character to the SkillScreen. Change that method to the following.

void linkLabel1_Selected(object sender, EventArgs e)
{
 InputHandler.Flush();

 CreatePlayer();
 CreateWorld();

 GameRef.SkillScreen.SkillPoints = 10;
 Transition(ChangeType.Change, GameRef.SkillScreen);
 GameRef.SkillScreen.SetTarget(GamePlayScreen.Player.Character);
}

I also updated the method to have 10 skill points to start with rather than 25. After calling Transition I
call the SetTarget method of the SkillScreen passing in GamePlayScreen.Player.Character, the
player's character.

I think I'm going to end this tutorial here. I wanted to update the state manager and add more on skills
to the game. Thinks are starting to take form but there is a long way to go yet. I encourage you to visit
the news page of my site, XNA Game Programming Adventures , for the latest news on my tutorials.

Good luck in your game programming adventures!

Jamie McMahon

http://xnagpa.net/news.html
http://xnagpa.net/news.html

