
XNA 4.0 RPG Tutorials

Part 23B

Level Editor

I'm writing these tutorials for the new XNA 4.0 framework. The tutorials will make more sense if they
are read in order. You can find the list of tutorials on the XNA 4.0 RPG tutorials page of my web site. I
will be making my version of the project available for download at the end of each tutorial. It will be
included on the page that links to the tutorials.

This is part B in my tutorial on creating a level editor to use with your game. In this part I will start
coding the actual level editor now that all of the basic pieces we need are in place. In this tutorial we
will be working mostly in the code for FormMain, the actual level editor. Right click FormMain in
the XLevelEditor project and select View Code. A lot of code is going to go into the code for the form
so I'm going to do it in stages. To start with I'm going to set up the using statements, a few fields and
properties, wire some event handlers, and set some properties of controls. Change the code for
FormMain to the following.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.IO;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;

using GDIBitmap = System.Drawing.Bitmap;
using GDIColor = System.Drawing.Color;
using GDIImage = System.Drawing.Image;
using GDIGraphics = System.Drawing.Graphics;
using GDIGraphicsUnit = System.Drawing.GraphicsUnit;
using GDIRectangle = System.Drawing.Rectangle;

using RpgLibrary.WorldClasses;

using XRpgLibrary.TileEngine;

namespace XLevelEditor
{
 public partial class FormMain : Form
 {
 #region Field Region

 SpriteBatch spriteBatch;
 LevelData levelData;

 TileMap map;
 List<Tileset> tileSets = new List<Tileset>();
 List<MapLayer> layers = new List<MapLayer>();

 #endregion

http://xnagpa.net/xnarpg4tutorials.html

 #region Property Region

 public GraphicsDevice GraphicsDevice
 {
 get { return mapDisplay.GraphicsDevice; }
 }

 #endregion

 #region Constructor Region

 public FormMain()
 {
 InitializeComponent();

 this.Load += new EventHandler(FormMain_Load);
 this.FormClosing += new FormClosingEventHandler(FormMain_FormClosing);

 tilesetToolStripMenuItem.Enabled = false;
 mapLayerToolStripMenuItem.Enabled = false;
 charactersToolStripMenuItem.Enabled = false;
 chestsToolStripMenuItem.Enabled = false;
 keysToolStripMenuItem.Enabled = false;

 newLevelToolStripMenuItem.Click += new EventHandler(newLevelToolStripMenuItem_Click);
 newTilesetToolStripMenuItem.Click += new
EventHandler(newTilesetToolStripMenuItem_Click);
 newLayerToolStripMenuItem.Click += new EventHandler(newLayerToolStripMenuItem_Click);

 mapDisplay.OnInitialize += new EventHandler(mapDisplay_OnInitialize);
 mapDisplay.OnDraw += new EventHandler(mapDisplay_OnDraw);
 }

 #endregion

 #region Form Event Handler Region

 void FormMain_Load(object sender, EventArgs e)
 {
 Application.Idle += new EventHandler(Application_Idle);
 }

 void FormMain_FormClosing(object sender, FormClosingEventArgs e)
 {
 }

 void Application_Idle(object sender, EventArgs e)
 {
 mapDisplay.Invalidate();
 }

 #endregion

 #region New Menu Item Event Handler Region

 void newLevelToolStripMenuItem_Click(object sender, EventArgs e)
 {
 using (FormNewLevel frmNewLevel = new FormNewLevel())
 {
 frmNewLevel.ShowDialog();

 if (frmNewLevel.OKPressed)
 {
 levelData = frmNewLevel.LevelData;
 tilesetToolStripMenuItem.Enabled = true;
 }
 }
 }

 void newTilesetToolStripMenuItem_Click(object sender, EventArgs e)
 {
 using (FormNewTileset frmNewTileset = new FormNewTileset())
 {
 frmNewTileset.ShowDialog();

 if (frmNewTileset.OKPressed)
 {
 TilesetData data = frmNewTileset.TilesetData;

 mapLayerToolStripMenuItem.Enabled = true;
 }
 }
 }

 void newLayerToolStripMenuItem_Click(object sender, EventArgs e)
 {
 using (FormNewLayer frmNewLayer = new FormNewLayer(levelData.MapWidth,
levelData.MapHeight))
 {
 frmNewLayer.ShowDialog();

 if (frmNewLayer.OKPressed)
 {
 MapLayerData data = frmNewLayer.MapLayerData;

 charactersToolStripMenuItem.Enabled = true;
 chestsToolStripMenuItem.Enabled = true;
 keysToolStripMenuItem.Enabled = true;
 }
 }
 }

 #endregion

 #region Map Display Event Handler Region

 void mapDisplay_OnInitialize(object sender, EventArgs e)
 {
 spriteBatch = new SpriteBatch(GraphicsDevice);

 mapDisplay.MouseEnter += new EventHandler(mapDisplay_MouseEnter);
 mapDisplay.MouseLeave += new EventHandler(mapDisplay_MouseLeave);
 mapDisplay.MouseMove += new MouseEventHandler(mapDisplay_MouseMove);
 mapDisplay.MouseDown += new MouseEventHandler(mapDisplay_MouseDown);
 mapDisplay.MouseUp += new MouseEventHandler(mapDisplay_MouseUp);
 }

 void mapDisplay_OnDraw(object sender, EventArgs e)
 {
 GraphicsDevice.Clear(Color.CornflowerBlue);
 Render();
 Logic();
 }

 void mapDisplay_MouseUp(object sender, MouseEventArgs e)
 {
 }

 void mapDisplay_MouseDown(object sender, MouseEventArgs e)
 {
 }

 void mapDisplay_MouseMove(object sender, MouseEventArgs e)
 {
 }

 void mapDisplay_MouseLeave(object sender, EventArgs e)
 {
 }

 void mapDisplay_MouseEnter(object sender, EventArgs e)
 {
 }

 #endregion

 #region Display Rendering and Logic Region

 private void Render()
 {
 }

 private void Logic()
 {
 }

 #endregion
 }
}

There was going to be confusion between some of the classes in the System.Drawing name space and
the XNA Framework so I removed the using statement for System.Drawing. I added in a using
statement for System.IO as we will be doing some file input and output. I also added in using
statements for the basic XNA framework and the XNA framework Graphics classes. There is then
several qualified using statements. A qualified using statement allows you to swap a fully qualified
class with the qualifier. So, when you need to use the Bitmap class from System.Drawing you can use
GDIBitmap. You may also hear it called aliasing, giving a class an alternative name.

I added in a few fields that I'm sure we are going to want to work with. There is a SpriteBatch field
because we are going to be drawing maps and you need a SpriteBatch to draw the layers. There is a
LevelData field that will hold information about the level currently being edited. I added in a TileMap
field, map, to hold the map. I also have two List<T> fields. The first is for the tilesets and the second
is the layers of the map.

At the moment there is just the one property, GraphicsDevice. I included that because you will need
access to the GraphicsDevice associated with the MapDisplay. You need it to create a SpriteBatch, to
clear the scene, and to read in content.

The constructor first wires event handlers for the Load event of the form and the FormClosing event.
In the Load event I will do a little initialization. In the FormClosing event I will be adding checks that
if the level has changed the user gets a warning that they haven't saved the level. I then set the Enabled
property of most of the main menu items to false. I do that because you don't want to add items until
there is a level to work with. I then wire the handlers for the Click event of the new level, new tileset,
and new maplayer menu items.

The event handler for the Load event for the form wires an event handler for the Idle event of the
application. The Idle event will be fired when your form isn't doing anything, or idle. When it is idle is
a good time to let the map display know that it can redraw itself. The FormClosing event handler does
nothing at the moment but will be used in the future so I added it in now. Next is the event handler for
the Idle event of the application. All it does is call the Invalidate method of the map display letting it
know it is time to redraw itself.

The next region of code is for the new menu items. The first is for the new level menu item. Inside of a
using statement I create a new instance of FormNewLevel. Inside that statement I call the ShowDialog

method. I then check the OKPressed property of the form. If it was true I set the levelData field to be
the LevelData property of FormNewLevel. I also set the Enabled property of the tileset menu item to
true so tilesets can be added.

The handler for the Click event for the new tileset menu item is similar. It creates an instance of the
form inside of a using statement. Inside that it displays the form using the ShowDialog method. It
checks to see if the OKPressed property of the form is true as well. It is I set a TilesetData local
variable to the TilesetData property. I also set the Enabled property of the map layer menu item to
true.

The event handler for the Click event for a new layer has a similar form as the others. In a using
statement I create a new FormNewLayer. I pass in the MapWidth and MapHeight from the
levelData field to the constructor. Inside the using statement I call the ShowDialog method to display
the form. I check to see if the OKPressed property of the form is true. If so, I create a MapLayerData
object. I also set the Enabled property of the other main menu items to true.

There is a region of code that is dedicated to event handlers related to the MapDisplay control. The
OnInitialize event will be triggered when the MapDisplay is first initialized. In the handler for that
event I create a new SpriteBatch object to be used in rendering the map. I then wire handlers for many
of the events related to the mouse.

The OnDraw event handler for the MapDisplay will be called when it is time to redraw the map. It
will be triggered automatically everything the Application.Idle event handler is called by calling the
Invalidate method of the MapDisplay. The method calls the Clear method of the GraphicsDevice for
the MapDisplay control and sets the background to the familiar CornflowerBlue you see in XNA. It
then calls a method Render. The Render method will be responsible for rendering the map. I also
added a method called Logic. The Logic method will be responsible for the logic of the editor. Both
methods live in a region dedicated to rendering and logic. At the moment they are method stubs that
will be filled out as things progress.

That is the basic framework for the level editor. The next step will be reading in the image for a tileset
so it can be used. To handle that I'm going to extend the event handler for the new tileset menu item.
First, you are going to want a list of images you can use for the form. Add the following field and
Change the newTilesetToolStripMenuItem_Click method to the following. I also added a new
method to the TileMap class called AddTileset that will add a new tileset to the map.

List<GDIImage> tileSetImages = new List<GDIImage>();

void newTilesetToolStripMenuItem_Click(object sender, EventArgs e)
{
 using (FormNewTileset frmNewTileset = new FormNewTileset())
 {
 frmNewTileset.ShowDialog();

 if (frmNewTileset.OKPressed)
 {
 TilesetData data = frmNewTileset.TilesetData;

 try
 {
 GDIImage image = (GDIImage)GDIBitmap.FromFile(data.TilesetImageName);
 tileSetImages.Add(image);

 Stream stream = new FileStream(data.TilesetImageName, FileMode.Open,

FileAccess.Read);

 Texture2D texture = Texture2D.FromStream(GraphicsDevice, stream);

 Tileset tileset = new Tileset(
 texture,
 data.TilesWide,
 data.TilesHigh,
 data.TileWidthInPixels,
 data.TileHeightInPixels);

 tileSets.Add(tileset);

 if (map != null)
 map.AddTileset(tileset);

 stream.Close();
 stream.Dispose();
 }
 catch (Exception ex)
 {
 MessageBox.Show("Error reading file.\n" + ex.Message, "Error reading image");
 return;
 }

 lbTileset.Items.Add(data.TilesetName);

 if (lbTileset.SelectedItem == null)
 lbTileset.SelectedIndex = 0;

 mapLayerToolStripMenuItem.Enabled = true;
 }
 }
}

public void AddTileset(Tileset tileset)
{
 tilesets.Add(tileset);
}

So, what is the new code doing. First I used a try-catch block when I try to read in the image for the
tileset. Here is a spot where an exception could be thrown if there is a problem reading the the image so
it is best to do this in a try-catch block. That way you can recover from an exception. I first try to read
in the image in a format that can be assigned to the Picture Box control that will preview the tileset, an
Image from GDI+. To do that I cast the return value of the FromFile method of the Bitmap class from
GDI+ as well. I then add the image to the list of tileset images. A change in XNA 4.0 from previous
versions of XNA is that there is no longer a FromFile method for the Texture2D class. You now have
to use the FromStream method instead. A stream is data that is sent from a source, be it a file or over
the internet, or other sources. I create a FileStream using the TilesetImageName property from the
TilesetData object for the name of the file and use FileMode.Open and FileAccess.Read to read the
file. If you don't specify you want to read the file you may get an access violation stating the file is
being used by another process. I then use the FromStream method of the Texture2D class to read in
the image. I then create a new Tileset object and add it to the list of tilesets using the Texture2D I just
read in and the fields from the TilesetData object. If that map field is not null I call the new
AddTileset method to add it to the map. I then close the stream and dispose it. I the catch for the try I
display a message box stating there was an error and the error then exit the method. I then add the
TilesetName property of the TilesetData object to lbTileset, the List Box that holds the names of the
tile sets. If the SelectedItem of lbTileset is null I set the SelectedIndex property of lbTileset to zero so
that the tileset will be selected. I also set the Enabled property of map layer menu item to true.

When the user clicks a tileset name in lbTileset you are going to want to perform a few actions. The
best way to do that is to handle the SelectedIndexChanged event of the List Box. I wired the event in
the Load event of the form and placed the handler in the same region. Change the FormMain_Load
method to the following and add this new region below the Form Event Handler Region.

void FormMain_Load(object sender, EventArgs e)
{
 Application.Idle += new EventHandler(Application_Idle);
 lbTileset.SelectedIndexChanged += new EventHandler(lbTileset_SelectedIndexChanged);
}

#region Tile Tab Event Handler Region

void lbTileset_SelectedIndexChanged(object sender, EventArgs e)
{
 if (lbTileset.SelectedItem != null)
 {
 nudCurrentTile.Value = 0;
 nudCurrentTile.Maximum = tileSets[lbTileset.SelectedIndex].SourceRectangles.Length - 1;
 FillPreviews();
 }
}

private void FillPreviews()
{
 int selected = lbTileset.SelectedIndex;
 int tile = (int)nudCurrentTile.Value;

 GDIImage preview = (GDIImage)new GDIBitmap(pbTilePreview.Width, pbTilePreview.Height);

 GDIRectangle dest = new GDIRectangle(0, 0, preview.Width, preview.Height);
 GDIRectangle source = new GDIRectangle(
 tileSets[selected].SourceRectangles[tile].X,
 tileSets[selected].SourceRectangles[tile].Y,
 tileSets[selected].SourceRectangles[tile].Width,
 tileSets[selected].SourceRectangles[tile].Height);

 GDIGraphics g = GDIGraphics.FromImage(preview);
 g.DrawImage(tileSetImages[selected], dest, source, GDIGraphicsUnit.Pixel);

 pbTilesetPreview.Image = tileSetImages[selected];
 pbTilePreview.Image = preview;
}

#endregion

The new event handler for the Load event of the form wires a handler for the SelectedIndexChanged
event of lbTileset that will be fired when a different tileset is selected from the list. The new region I
added is called Tile Tab Event Handler Region and will house event handlers related to the tile tab in
the left pane. The event handler makes sure that the SelectedItem is not null. If it is not I set the Value
property of nudCurrentTile to 0, the first tile in the tile set. I also set the Maximum property to be the
number of source rectangles in the tileset minus 1 because the source rectangles are zero based so the
last rectangle is the length minus 1. I then call a method I wrote that will fill the Picture Boxes in the
tab called FillPreviews.

The FillPreviews does a little GDI+ manipulation to get the selected tile in nudCurrentTile into the
tile preview Picture Box. You first need to know what tileset is selected, the SelectedIndex property of
lbTileset, and which tile is selected, the Value property of nudCurrentTile. It needs to be cast to an
integer because it is a decimal. I first create a GDIImage that is the width and height of the preview
Picture Box for the tile. I need a destination rectangle to draw the image to. I use zero for the X and Y
coordinates and the Width and Height of the image for the width and height. I also need the source

rectangle of the tile in the tile set. I get that using the SelectedIndex and the Value properties that I
captured and the tileSets collection. I then create a Graphics object using FromImage and the preview
image that I created. I then using the DrawImage method passing in the image from tileSetImages, the
destination rectangle, source rectangle, and GDIGraphicsUnit.Pixel. I then set the Image properties of
the Picture Boxes.

You are also going to want to change the tile preview if the Value property of nudCurrentTile
changes. I will wire that in the Load event handler of the form as well. Change that method to the
following and add this handler to the Tile Tab Event Handler Region.

void FormMain_Load(object sender, EventArgs e)
{
 Application.Idle += new EventHandler(Application_Idle);
 lbTileset.SelectedIndexChanged += new EventHandler(lbTileset_SelectedIndexChanged);
 nudCurrentTile.ValueChanged += new EventHandler(nudCurrentTile_ValueChanged);
}

void nudCurrentTile_ValueChanged(object sender, EventArgs e)
{
 if (lbTileset.SelectedItem != null)
 {
 FillPreviews();
 }
}

The new handler checks to see if the SelectedItem property is not null. If it is null you don't want a
preview. If it is not null I call the FillPreviews method to update the previews.

The next step it to handle creating a new layer. That takes place in the handler for the new layer menu
item. Change that handler to the following.

void newLayerToolStripMenuItem_Click(object sender, EventArgs e)
{
 using (FormNewLayer frmNewLayer = new FormNewLayer(levelData.MapWidth, levelData.MapHeight))
 {
 frmNewLayer.ShowDialog();

 if (frmNewLayer.OKPressed)
 {
 MapLayerData data = frmNewLayer.MapLayerData;

 if (clbLayers.Items.Contains(data.MapLayerName))
 {
 MessageBox.Show("Layer with name " + data.MapLayerName + " exists.", "Existing
layer");
 return;
 }

 MapLayer layer = MapLayer.FromMapLayerData(data);
 clbLayers.Items.Add(data.MapLayerName, true);
 clbLayers.SelectedIndex = clbLayers.Items.Count - 1;

 layers.Add(layer);

 if (map == null)
 map = new TileMap(tileSets, layers);

 charactersToolStripMenuItem.Enabled = true;
 chestsToolStripMenuItem.Enabled = true;
 keysToolStripMenuItem.Enabled = true;
 }
 }
}

What the new code is doing is checking to see if an entry in clbLayers, the Checked List Box, with
the name data.MapLayername already exists. If it does I display an error message that a layer with
that name already exists and exit the method. Otherwise I use the FromMapLayerData method I
added to the MapLayer class to create a new layer and add it to the List<MapLayer>. I also add the
MapLayerName to clbLayers. When adding the item I have it set to be checked initially, and thus
drawn by default. I also set the SelectedIndex property of clbLayers to be the last layer that was
added. If the map field is null I create a new TileMap using the List<Tileset> and List<MapLayer>.
This is where you can see what the dangers of passing reference types around. The map field now has
references to the tileSets and layers fields of the form. Changing one of them changes the other. I had
originally included an else to the if statement that checked to see if map was null where I'd the new
layer to map and suddenly there were 3 layers in the layers field, not 2. So, be careful when you are
passing reference types around that this sort of thing does not happen.

The next step will be to actually draw the layers. For that we need two more things, a Camera and an
Engine. Add the following fields to the Fields region of FormMain. Also, change the Load event
handler of the form to the following to actually create the camera and the engine.

Camera camera;
Engine engine;

void FormMain_Load(object sender, EventArgs e)
{
 Application.Idle += new EventHandler(Application_Idle);

 lbTileset.SelectedIndexChanged += new EventHandler(lbTileset_SelectedIndexChanged);
 nudCurrentTile.ValueChanged += new EventHandler(nudCurrentTile_ValueChanged);

 Rectangle viewPort = new Rectangle(0, 0, mapDisplay.Width, mapDisplay.Height);
 camera = new Camera(viewPort);

 engine = new Engine(32, 32);
}

What I did was create a Rectangle that describes the MapDisplay control because the Camera class
needs a rectangle that describes the view port it is using. I then create an Engine instance with pixel
width and height of 32 pixels. Something I will be handling later, possibly not in this tutorial, is what to
do if the size of the MapDisplay changes and how to recover from that. I will also add in options that
you can set to change the width and height of the tiles on the screen.

So, the next step is to start drawing. That will take place in the Render method. Change the Render
method to the following.

private void Render()
{
 for (int i = 0; i < layers.Count; i++)
 {
 spriteBatch.Begin(
 SpriteSortMode.Deferred,
 BlendState.AlphaBlend,
 SamplerState.PointClamp,
 null,
 null,
 null,
 camera.Transformation);

 if (clbLayers.GetItemChecked(i))
 layers[i].Draw(spriteBatch, camera, tileSets);

 spriteBatch.End();
 }
}
I loop through all of the layers in a for loop, not a foreach loop. I don't use a foreach loop because I will
want to check if a layer should be drawn or not controlled by clbLayers. I then call the Begin method
of SpriteBatch passing in parameters like I did in the game. There is an if statement after the call to
Begin that gets if the item at the index in clbLayers is checked. If it is I call the Draw method of the
layer in the list of layers passing in the SpriteBatch object, the Camera object and the List<Tileset>
for the tilesets. I then call the End method of SpriteBatch.

The next thing I want to do is get the map scrolling and adding in tiles with the editor. My computer
was scrolling my maps really fast so I ended up adding a Timer control to the form. Right click
FormMain in the solution explorer and select View Designer. Now drag a new Timer control onto the
form. Set the (Name) property of the timer to controlTimer. Now go back to the code for the form. I
the Load event of the form I wired a handler for the Tick event of the timer and set a couple properties.
I added the handler to the Form Event Handler Region. Change the FormMain_Load method to the
following and add this handler to the region. I also removed the handler for Application.Idle. I wall
call the Invalidate method from the handler for the timer's tick event.

void FormMain_Load(object sender, EventArgs e)
{
 lbTileset.SelectedIndexChanged += new EventHandler(lbTileset_SelectedIndexChanged);
 nudCurrentTile.ValueChanged += new EventHandler(nudCurrentTile_ValueChanged);

 Rectangle viewPort = new Rectangle(0, 0, mapDisplay.Width, mapDisplay.Height);
 camera = new Camera(viewPort);

 engine = new Engine(32, 32);

 controlTimer.Tick += new EventHandler(controlTimer_Tick);
 controlTimer.Enabled = true;
 controlTimer.Interval = 200;
}

void controlTimer_Tick(object sender, EventArgs e)
{
 mapDisplay.Invalidate();
 Logic();
}

So, all I did was wire the Tick event handler and set the Enabled property to true so that the event will
be fired and I set the Interval value to 200 milliseconds, a fifth of a second. You may want to make the
Interval smaller if your logic is sluggish or higher if it is too fast. Even where I set it my map scrolled
rather quickly. Part of the reason being that I'm scrolling the map 1 tile at a time. The handler for the
Tick event calls Invalidate on mapDisplay to redraw the display and it calls the Logic method.

For handling the logic of the editor I needed to add a few fields. A Point field for the position of the
mouse over the MapDisplay and two bool fields that determines if the left mouse button is down and
the other determines if we are interested in tracking the mouse. Add the following fields to FormMain.

Point mouse = new Point();

bool isMouseDown = false;
bool trackMouse = false;

Now I'm going to change the code for the mouse event handlers for the MapDisplay. Change them to
the following.

void mapDisplay_MouseUp(object sender, MouseEventArgs e)
{
 if (e.Button == MouseButtons.Left)
 isMouseDown = false;
}

void mapDisplay_MouseDown(object sender, MouseEventArgs e)
{
 if (e.Button == MouseButtons.Left)
 isMouseDown = true;
}

void mapDisplay_MouseMove(object sender, MouseEventArgs e)
{
 mouse.X = e.X;
 mouse.Y = e.Y;
}

void mapDisplay_MouseLeave(object sender, EventArgs e)
{
 trackMouse = false;
}

void mapDisplay_MouseEnter(object sender, EventArgs e)
{
 trackMouse = true;
}

The handler for MouseUp checks to see if the left mouse button triggered the event. If it did I set
isMouseDown to false. The MouseDown handler works in reverse. The MouseMove handler sets the
X and Y properties of mouse to the X and Y properties of the mouse. The handler for MouseLeave sets
trackMouse to false because the mouse has moved outside of the MapDisplay and we aren't interested
in processing it. The MouseEnter handler does the reverse, sets trackMouse to true because we are
now interested in the mouse again.

Before I get to the logic of scrolling the map and drawing tiles I need to make two changes to the
Camera class. I need to make the set part of the Position property public. I also need to make the
LockCamera method public. Change the Position property and LockCamera method to the
following.

public Vector2 Position
{
 get { return position; }
 set { position = value; }
}

public void LockCamera()
{
 position.X = MathHelper.Clamp(position.X,
 0,
 TileMap.WidthInPixels * zoom - viewportRectangle.Width);
 position.Y = MathHelper.Clamp(position.Y,
 0,
 TileMap.HeightInPixels * zoom - viewportRectangle.Height);
}

The next thing to do is to update the Logic method as that is where I will be handling scrolling the map
and drawing the map. Change the Logic method to the following.

private void Logic()
{

 if (layers.Count == 0)
 return;

 Vector2 position = camera.Position;

 if (trackMouse)
 {
 if (mouse.X < Engine.TileWidth)
 position.X -= Engine.TileWidth;

 if (mouse.X > mapDisplay.Width - Engine.TileWidth)
 position.X += Engine.TileWidth;

 if (mouse.Y < Engine.TileHeight)
 position.Y -= Engine.TileHeight;

 if (mouse.Y > mapDisplay.Height - Engine.TileHeight)
 position.Y += Engine.TileHeight;

 camera.Position = position;
 camera.LockCamera();

 position.X = mouse.X + camera.Position.X;
 position.Y = mouse.Y + camera.Position.Y;

 Point tile = Engine.VectorToCell(position);

 if (isMouseDown)
 {
 if (rbDraw.Checked)
 {
 layers[clbLayers.SelectedIndex].SetTile(
 tile.X,
 tile.Y,
 (int)nudCurrentTile.Value,
 lbTileset.SelectedIndex);
 }
 if (rbErase.Checked)
 {
 layers[clbLayers.SelectedIndex].SetTile(
 tile.X,
 tile.Y,
 -1,
 -1);
 }
 }
 }
}

The first thing I do is check to see if the Count property of the layers field is zero. If it is you don't
want to try and edit anything so I exit the method. I then save the Position property of the camera in a
local variable position. I then check the trackMouse property. If it is true the mouse is in the map
display. I check to see if the X value of the mouse's position is less than the width of a tile on the
screen. If it is I subtract the width of a tile from the position of the camera, scrolling the map left. Then
if the X value of the mouse's position is greater than or equal to the width of the map display minus the
width of a tile I scroll the map one tile to the right. I do something similar for the Y component of the
mouse's position. If it is less than the height of tile I scroll up and if it is greater than the height of the
display minus a tile I scroll the map down. Since Position is a property in the Camera class and a
structure you can't modify its X and Y value directly so I set the Position property of the camera to the
position variable and call the LockCamera method to lock the camera. I then set the position variable
to the position of the mouse plus the position of the camera. This tells us which tile the mouse is in on
the map. I capture what tile the mouse is in using the VectorToCell method of the Engine class. I then
check if the isMouseDown field is true. If it is I check if rbDraw's Checked property is true. If it is

true you want to draw the tile. I call the SetTile method of the MapLayer class that takes the x and y
coordinates of the tile and the tile index and tileset the tile belongs to. Similarly if rbErase's Checked
property is true you want to erase the tile. That is done by setting its tile index and tileset to -1.

So we have a working basic level editor. I'm going to stop this tutorial here though as I think you've had
more than enough to digest. In a future tutorial I'm going to add writing out and reading in maps and
adding some more options into the editor. The plan for this tutorial was to get started with the level
editor and we are well under way.

I encourage you to visit the news page of my site, XNA Game Programming Adventures , for the latest
news on my tutorials.

Good luck in your game programming adventures!

Jamie McMahon

http://xnagpa.net/news.html
http://xnagpa.net/news.html

