
XNA 4.0 RPG Tutorials

Part 23A

Level Editor

I'm writing these tutorials for the new XNA 4.0 framework. The tutorials will make more sense if they
are read in order. You can find the list of tutorials on the XNA 4.0 RPG tutorials page of my web site. I
will be making my version of the project available for download at the end of each tutorial. It will be
included on the page that links to the tutorials.

You all knew that this was coming at some point. You will want to be able to create your world at
design time and read it in at run time. For that you will need a world, or level, editor. To accomplish
that I'm going to add a new project that will be used to create your levels and other content that is XNA
related. The RpgEditor is great for creating data to be used with the game but you are going to want to
associated XNA related content to NPCs as an example. You will want a sprite to represent the NPC in
the game.

To get started right click the EyesOfTheDragon solution, not the project, in the solution explorer.
Select Add and then New Project. Choose a Windows Game (4.0) from the list of XNA projects.
Name this new project XLevelEditor. You might be wondering why I'm adding a new game project
and not a Windows Forms project. The reason has to do with Windows 7 and it not finding the XNA
assemblies at run time. The alternative is to create an XNA Windows game and add a reference to
System.Windows.Forms.

Do that now by right clicking XLevelEditor in the solution explorer and selected Add Reference.
From the .NET tab select System.Windows.Forms. You are also going to want references to the
libraries we created. Right click XRpgEditor again and select Add Reference. From the Project tab
select the RpgLibrary and XRpgLibrary projects.

There is a problem however. This project is set to launch an XNA Windows game and not Windows
Forms application. You are first going to want to add a Windows Form to the XRpgEditor project.
Right click the XRpgEditor, select Add and then Windows Form. Name this new form FormMain.
Now, open the Program.cs file in the XRpgEditor project and chance it to the following.

using System;
using System.Windows.Forms;

namespace XRpgEditor
{
 static class Program
 {
 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 static void Main(string[] args)
 {
 Application.EnableVisualStyles();
 Application.SetCompatibleTextRenderingDefault(false);

http://xnagpa.net/xnarpg4tutorials.html

 using (FormMain frmMain = new FormMain())
 {
 Application.Run(frmMain);
 }
 }
 }
}

What this code is doing is similar to the Program.cs file in the RpgEditor. There is a using statement
to bring the System.Windows.Forms name space into scope for the Application class. Inside the
Main method, the first method called by C# when a program is executed, calls a few methods of the
Application class to set some styles for the form. Then in a using statement I create a new instance of
FormMain and inside of the using statement call Application.Run to start the form. When the form
closes all disposable resources held by the form will automatically be released instead of waiting for
the garbage collector to release them. I had to mark Main with an attribute, STAThread, to allow
certain thread related tasks to work.

There are a few more things to do to prepare the project. One is that you want to change the project so
that it uses the Reach profile. I'm doing this because sometimes I will be using my laptop for the
tutorials and it doesn't support the HiDef profile. Right click the XRpgEditor and select Properties.
On the XNA Game Studio tab set the Game Profile to Use Reach. While you have the properties for
the properties select the Application tab. Change the Target framework to be .NET Framework 4
instead of .NET Framework 4 Client Profile. Reply Yes to the dialog that pops up. You can close the
Properties now. The last step is to add a reference to the project for the IntermediateSerializer so you
can read and write your data from the editor. Right click the XRpgEditor project and select Add
Reference. From the .NET tab add Microsoft.Xna.Framework.Content.Pipeline and make sure you
add version 4.0.0.0 for XNA 4.0.

You are going to want to host XNA inside of the editor. For that you will want a few classes from the
WinForms Series 1: Graphics sample from App Hub. You can find the sample from the following
link: http://create.msdn.com/en-US/education/catalog/sample/winforms_series_1 Download and extract
the files to a directory. Navigate to that directory and drag the following files from windows explorer
onto the XRpgEditor project: GraphicsDeviceControl.cs, GraphicsDeviceService.cs, and
ServiceContainer.cs.

The next step is to create a class for drawing the map in. Right click the XRpgEditor project, select
Add and then Class. Name this new class MapDisplay. This is the code for that class.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace XLevelEditor
{
 class MapDisplay : WinFormsGraphicsDevice.GraphicsDeviceControl
 {
 public event EventHandler OnInitialize;
 public event EventHandler OnDraw;

 protected override void Initialize()
 {
 if (OnInitialize != null)
 OnInitialize(this, null);
 }

http://create.msdn.com/en-US/education/catalog/sample/winforms_series_1

 protected override void Draw()
 {
 if (OnDraw != null)
 OnDraw(this, null);
 }
 }
}

The first step is that I inherit the class from WinFormsGraphicsDevice.GraphicsDeviceControl that
is from the WinForms series from App Hub that represents a control that can be rendered to using
XNA. This is an abstract class and you need to implement two methods: Initialize and Draw. I also
added in two event handlers called OnInitialize and OnDraw. In the Initialize method I check to see if
OnIntialize is not null and if it isn't I call the OnInitialize method. I do something similar for the
Draw method but with OnDraw instead of OnInitialize.

Build your project now. After building it bring up the design view of FormMain by right clicking it
and selecting View Designer. If you expand the Toolbox you should see something similar to the
following at the top of the Toolbox.

The next step is going to be to design some forms. The main form will be the actual editor. The child
forms will be for adding items to a level. I found using tables for designing forms is much nicer than
just having a bunch of scrawling text. Set the following properties for FormMain.

FormMain
Size 1024, 720
StartPosition CenterParent

Now, drag a Menu Strip onto FormMain. The items in the first row are the menu items along the top.
Any items in a column under item are the menu items below it.

&Level &Tileset &Map Layer &Characters C&hests &Keys
&New Level &New Tileset &New Layer

&Open Level &Open Tileset &Open Layer

&Save Level &Save Tileset &Save Layer

- &Remove Tileset

E&xit

The next control that I added to the form was a Split Container. The Split Container has two panels
that can hold controls. In the one panel I added in a MapDisplay control that I created earlier. The
other panel holds a Tab Control that has tabs for the different parts of the map, tiles, map layers,
characters, etc.

Drag a Split Container onto FormMain. Set the following properties for the Split Container. The
default values for the other properties are fine.

Property Value
(Name) splitContainer1
Dock Fill
SplitterDistance 800

Onto Panel1 of the Split Container, the one of the left, drag on a Map Display control that you
created earlier. Set the following properties for the Map Display control.

Property Value
(Name) mapDisplay
Dock Fill
TabIndex 0

Onto Panel2 of the Split Container, drag on a Tab Control. The properties you want to set for the Tab
Control are next.

Property Value
(Name) tabProperties
Dock Fill
TabIndex 1

In the properties window for the Tab Control there is an entry TabPages. Click the (Collection) part
will bring up a dialog for the pages. Select the default pages and click the Remove button to remove
them. You will now add in pages for the tabs. There are 5 tabs in total. Set the following properties for
the tabs.

(Name) Text
0 tabTilesets Tiles
1 tabLayers Map Layers
2 tabCharacters Characters
3 tabChests Chests
4 tabKeys Keys

That takes up more room but I think that it looks a little nicer and is a little more precise when it comes
to designing forms. The next step is to design the tabs. Bring up the Tiles tab in the editor. You can do
that by clicking the Tiles tab in the Tab Control. If that tab is not visible clicking the arrow buttons
will move between tabs. What my Tiles tab looks like is on the next page.

The tab is made up of three Labels, one Group Box, two Picture Boxes, two Radio Buttons, one List
Box, and a Numeric Up Down control. The first control to drag onto the tab is a Label. Set the
following properties of the Label.

Property Value
(Name) lblTile
AutoSize FALSE
Location 7, 7
Size 50, 17
Text Tile
TextAlign TopCenter

Now, drag on a Picture Box under lblTile. Set these properties of the Picture Box.

Property Value
(Name) pbTilePreview
Location 7, 27
Size 50, 50

Now, drag a Group Box to the right of lblTile. Set the following
properties for the Group Box.

Property Value
(Name) gbDrawMode
Location 63, 7
Size 128, 70
Text Draw Mode

Onto the Group Box you are going to drag on two Radio Buttons. Set
the following properties for the Radio Buttons.

Property Value
(Name) rbDraw
AutoSize TRUE
Checked TRUE
Location 7, 20
Text Draw

Property Value
(Name) rbErase
AutoSize TRUE
Location 7, 43
Text Erase

Under the other controls drag on a Numeric Up Down control. Set the
following properties for that control.

Property Value
(Name) nudCurrentTile
Location 7, 83
Size 180, 22

Under the Numeric Up Down control drag a Label control. Set the following properties for the Label.

Property Value
(Name) lblCurrentTileset
AutoSize FALSE
Location 7, 112

Size 180, 23
Text Current Tileset
TextAlign TopCenter

Under that you will drag on a Picture Box. Set the following properties for the Picture Box.

Property Value
(Name) pbTilesetPreview
Location 7, 138
Size 180, 180

Under the Picture Box control drag a Label control. Set the following properties for the Label.

Property Value
(Name) lblTilesets
AutoSize FALSE
Location 7, 321
Size 180, 23
Text Tilesets
TextAlign TopCenter

The last control to drag on is a List Box. Set the following properties for the List Box.

Property Value
(Name) lbTileset
Location 7, 352
Size 180, 260

The last thing I'm going to design is the Map Layers tab. There is just the one control on the Map
Layers tab, a Checked List Box. I used a Checked List Box rather than a List Box to control how the
layers are drawn. If you have a layer in the list box checked it will be drawn, otherwise it won't be
drawn. Select the Map Layers tab and drag a Checked List Box onto the tab. Set the following
properties of the Checked List Box.

Property Value
(Name) clbLayers
Dock Fill

To be able to use this feature I need to make a quick change to the TileMap and MapLayer classes.
What I'm going to do is instead of drawing the tiles in the TileMap class, have the MapLayer class

draw the tiles. I will start with the MapLayer class. You will want to add using statements for the basic
XNA framework and the XNA framework Graphics classes. Add the following using statements and
method to the MapLayer class.

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;

public void Draw(SpriteBatch spriteBatch, Camera camera, List<Tileset> tilesets)
{
 Point cameraPoint = Engine.VectorToCell(camera.Position * (1 / camera.Zoom));
 Point viewPoint = Engine.VectorToCell(
 new Vector2(
 (camera.Position.X + camera.ViewportRectangle.Width) * (1 / camera.Zoom),
 (camera.Position.Y + camera.ViewportRectangle.Height) * (1 / camera.Zoom)));

 Point min = new Point();
 Point max = new Point();

 min.X = Math.Max(0, cameraPoint.X - 1);
 min.Y = Math.Max(0, cameraPoint.Y - 1);
 max.X = Math.Min(viewPoint.X + 1, Width);
 max.Y = Math.Min(viewPoint.Y + 1, Height);

 Rectangle destination = new Rectangle(0, 0, Engine.TileWidth, Engine.TileHeight);
 Tile tile;

 for (int y = min.Y; y < max.Y; y++)
 {
 destination.Y = y * Engine.TileHeight;

 for (int x = min.X; x < max.X; x++)
 {
 tile = GetTile(x, y);

 if (tile.TileIndex == -1 || tile.Tileset == -1)
 continue;

 destination.X = x * Engine.TileWidth;

 spriteBatch.Draw(
 tilesets[tile.Tileset].Texture,
 destination,
 tilesets[tile.Tileset].SourceRectangles[tile.TileIndex],
 Color.White);
 }
 }
}

Basically what I did was move the code for drawing a map to the layer and fixed up a couple syntax
errors caused by moving things. I needed to pass the List<Tileset> to the method as the tilesets are part
of the map. I could have moved the List<Tileset> to the layer but that would make the changes more
difficult to do.

The change to the TileMap class was much simpler. There is now just a foreach loop that loops
through all of the layers calling the Draw method of each layer passing in the appropriate values.
Change the Draw method of the TileMap class to the following.

public void Draw(SpriteBatch spriteBatch, Camera camera)
{
 foreach (MapLayer layer in mapLayers)
 {
 layer.Draw(spriteBatch, camera, tilesets);
 }
}

Rather than reading and writing the classes in the XRpgLibrary directly, I'm going to add some data
classes to the RpgLibrary. You read and write the data classes from the editor. When the player
unlocks an area of your world you read in the data using the Content Pipeline. Since they are changing
the world as they explore it you will be using a different mechanism for saving and loading games.

To get started, right click the RpgLibrary and select New Folder. Name the new folder WorldClasses.
Right click the WorldClasses folder, select Add and then Class. Name the new class TilesetData. The
code for that class follows next.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.WorldClasses
{
 public class TilesetData
 {
 public string TilesetName;
 public string TilesetImageName;
 public int TileWidthInPixels;
 public int TileHeightInPixels;
 public int TilesWide;
 public int TilesHigh;
 }
}

Just a basic public class that has enough data to create a Tileset from the XRpgLibrary. There are two
string fields, TilesetName and TilesetImageName. TilesetName is the name of the tileset and will be
used in a manager class. TilesetImageName is the name of the file that holds the image for the tileset.
There are then four integer fields that describe the tiles in a tileset. There are fields for the width and
height of the tiles in the tileset, TileWidthInPixels and TileHeightInPixels. There are also fields for
the number of tiles wide the tile set is and how many tiles high, TilesWide and TilesHigh. With those
values you have enough information to pass to the constructor of the Tileset class to create a Tileset.

The next class to add is a class to represent a map layer as maps are made up of lists of Tileset and
MapLayer objects. Right click the WorldClasses folder in the RpgLibrary folder, select Add and
then Class. Name this new class MapLayerData. This is the code for that class.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.WorldClasses
{
 public struct Tile
 {
 public int TileIndex;
 public int TileSetIndex;

 public Tile(int tileIndex, int tileSetIndex)
 {
 TileIndex = tileIndex;
 TileSetIndex = tileSetIndex;
 }
 }

 public class MapLayerData

 {
 public string MapLayerName;
 public int Width;
 public int Height;
 public Tile[] Layer;

 private MapLayerData()
 {
 }

 public MapLayerData(string mapLayerName, int width, int height)
 {
 MapLayerName = mapLayerName;
 Width = width;
 Height = height;

 Layer = new Tile[height * width];
 }

 public void SetTile(int x, int y, Tile tile)
 {
 Layer[y * Width + x] = tile;
 }

 public Tile GetTile(int x, int y)
 {
 return Layer[y * Width + x];
 }
 }
}

I added a structure to this class for tiles. It has public integer fields for the index of the tile and the
index of the tileset. I included a constructor that requires two parameters: tileIndex and tileSetIndex.
They are for the index of the tile and the index of the tileset respectively. Making it a structure rather
than a class makes it a value type rather than a reference type. So, when I create the array for tiles in the
MapLayerData the tiles automatically have values.

The MapLayerData class has four public fields: Layer that is a single dimension array of Tile,
MapLayerName that is a string for the name of the layer, Width and Height that are integers and are
the width and height of the map. Why did I choose a single dimension array rather than a two
dimension array like in the tile engine? You can't serialize arrays with more than one dimension. You
can simulate a multidimension array in a one dimension array though.

There are two constructors for the MapLayerData class. There is a private constructor that takes no
parameters that will be used in serializing and deserializing the class. The public constructor takes three
paramaters: mapLayerName that is the name of the map layer, width and height that are the width
and height of the map. The public constructor first sets the MapLayerName, Width, and Height fields
to the values passed in. I then create a single dimension array of Tile that is height times width. To find
out how many elements are in a 2D array you multiple the width of the array by the height of the array
so to represent a 2D array in a 1D array you need an array that is that size.

There are two public methods in this class. The first, SetTile, sets that tile that is represented at
coordinates x and y to the Tile passed in. To set the element, and retrieve the element, you need to be
consistent in determining the index. I used the calculation y * Width + x. Lets think about this a bit.
Take a small 2D array, [4, 3]. You can represent it using a 1D array [12]. You have y between 0 and 3
and x between 0 and 2 in loops like this.

for (y = 0; y < 4; y++)

 for (x = 0; x < 3; x++)

When you y at 0 the calculation for the 1D array will be 0 * 3 + 0 = 0, 0 * 3 + 1 = 1, and 0 * 3 + 2 = 2.
Then if you move to y at 1 you will get 1 * 3 + 0 = 3, 1 * 3 + 1 = 4, and 1 * 3 + 2 = 5. When you then
move to y at 2 you will get 2 * 3 + 0 = 6, 2 * 3 + 1 = 7, and 2 * 3 + 2 = 8. Finally, when you move y to
3 you will get 3 * 3 + 0 = 9, 3 * 3 + 1 = 10, and 3 * 3 + 2 = 11. You can see that using the calculation y
* WidthOfArray + x you can determine the position of a 2D element at (x, y) in 1D array. This is
pretty much what the computer does when you declare a 2D array. It sets aside an area of memory the
size of the array. It uses calculations like above to decide where the element resides in memory.

Now that you have classes that represent a tileset and a map layer you can create a class that can
represent an entire map. Right click the WorldClasses in the RpgLibrary project, select Add and then
Class. Name this new class MapData. The code for that class follows next.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.WorldClasses
{
 public class MapData
 {
 public string MapName;
 public MapLayerData[] Layers;
 public TilesetData[] Tilesets;

 private MapData()
 {
 }

 public MapData(string mapName, List<TilesetData> tilesets, List<MapLayerData> layers)
 {
 MapName = mapName;
 Tilesets = tilesets.ToArray();
 Layers = layers.ToArray();
 }
 }
}

Not a very complex class. There are just three fields. A string for the name of the map, an array of
MapLayerData for the layers in the map, and an array of TilesetData for the tilesets in the map. There
is a private constructor that will be used in serializing and deserializing the map and a public
constructor that takes three parameters: the name of the map, a List<TilesetData> for the tilesets the
maps uses, and a List<MapLayerData> for the layers in the map. It sets the fields using the values
that are passed to the constructor. I use the ToArray method of the List<T> class to convert the lists to
arrays.

I want to add another data class, for levels. Right click the WorldClasses in the RpgLibrary project,
select Add and then Class. This is the code for that class.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.WorldClasses
{
 public class LevelData

 {
 public string LevelName;
 public string MapName;
 public int MapWidth;
 public int MapHeight;
 public string[] CharacterNames;
 public string[] ChestNames;
 public string[] TrapNames;

 private LevelData()
 {
 }

 public LevelData(
 string levelName,
 string mapName,
 int mapWidth,
 int mapHeight,
 List<string> characterNames,
 List<string> chestNames,
 List<string> trapNames)
 {
 LevelName = levelName;
 MapName = mapName;
 MapWidth = mapWidth;
 MapHeight = mapHeight;
 CharacterNames = characterNames.ToArray();
 ChestNames = chestNames.ToArray();
 TrapNames = trapNames.ToArray();
 }
 }
}

Another rather straight forward class. There are fields for the name of the level, LevelName, the map
for the level, MapName, the width and height of the map, MapWidth and MapHeight, the names of
characters on the map, CharacterNames, the name of chests on the map, ChestNames, and the names
of traps on the map, TrapNames. The private constructor will be used in serializing and deserializing
objects. The public constructor takes a parameter for each of the fields. For the arrays of strings I pass
in List<string> and use the ToArray method of List<T>.

I'm going to move back to the editor now. I want to add in a form for creating a new level. Right click
the XLevelEditor project in the solution explorer, select Add and then Windows Form. Name this
new form FormNewLevel. My finished form looked like this.

To start you are going to want to set some of the properties of the form itself. They are in the following
table.

Property Value
ControlBox FALSE
FormBorderStyle FixedDialog
Size 225, 210
StartUpPosition CenterParent
Text New Level

Onto the form I dragged four Labels, two Text Boxes, two Masked Text Boxes and two Buttons. I
will do the controls in pairs that are in the same row of the form. Drag on a Label and Text Box onto
the form. Set the following properties.

Label
Property Value
(Name) lblLevelName
Location 13, 15
Text Level Name:

Text Box
Property Value
(Name) tbLevelName
Location 106, 12

Drag on another Label and Text Box setting the following properties for them.

Label
Property Value
(Name) lblMapName
Location 17, 42
Text Map Name:

Text Box
Property Value
(Name) tbMapName
Location 106, 42

The next pair of controls are a Label and a Masked Text Box. Drag them on and set these properties.

Label
Property Value
(Name) lblMapWidth

Location 21, 75
Text Map Width:

Masked Text Box
Property Value
(Name) mtbWidth
Location 106, 72
Mask 0000 (four zeros)
Size 45, 22

The next pair of controls are a Label and a Masked Text Box. Drag them on and set these properties.

Label
Property Value
(Name) lblMapHeight
Location 13, 106
Text Map Height:

Masked Text Box
Property Value
(Name) mtbHeight
Location 106, 103
Mask 0000 (four zeros)
Size 45, 22

The last two controls to add are two Button controls. Add them and set these properties.

(Name) Location Size Text
btnOK 13, 142 75, 23 OK
btnCancel 106, 142 75, 23 Cancel

Now that the form has been designed it is time to code its logic. Right click FormNewLevel in the
XLevelEditor project and select View Code. Change the code for the form to the following.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

using RpgLibrary.WorldClasses;

namespace XLevelEditor
{
 public partial class FormNewLevel : Form
 {
 #region Field Region

 bool okPressed;
 LevelData levelData;

 #endregion

 #region Property Region

 public bool OKPressed
 {
 get { return okPressed; }
 }

 public LevelData LevelData
 {
 get { return levelData; }
 }

 #endregion

 #region Constructor Region

 public FormNewLevel()
 {
 InitializeComponent();

 btnOK.Click += new EventHandler(btnOK_Click);
 btnCancel.Click += new EventHandler(btnCancel_Click);
 }

 #endregion

 #region Button Event Handler Region

 void btnOK_Click(object sender, EventArgs e)
 {
 if (string.IsNullOrEmpty(tbLevelName.Text))
 {
 MessageBox.Show("You must enter a name for the level.", "Missing Level Name");
 return;
 }

 if (string.IsNullOrEmpty(tbMapName.Text))
 {
 MessageBox.Show("You must enter a name for the map of the level.", "Missing Map
Name");
 return;
 }

 int mapWidth = 0;
 int mapHeight = 0;

 if (!int.TryParse(mtbWidth.Text, out mapWidth) || mapWidth < 1)
 {
 MessageBox.Show("The width of the map must be greater than or equal to one.",
"Map Size Error");
 return;
 }

 if (!int.TryParse(mtbHeight.Text, out mapHeight) || mapHeight < 1)
 {
 MessageBox.Show("The height of the map must be greater than or equal to one.",
"Map Size Error");

 return;
 }

 levelData = new RpgLibrary.WorldClasses.LevelData(
 tbLevelName.Text,
 tbMapName.Text,
 mapWidth,
 mapHeight,
 new List<string>(),
 new List<string>(),
 new List<string>());

 okPressed = true;
 this.Close();
 }

 void btnCancel_Click(object sender, EventArgs e)
 {
 okPressed = false;
 this.Close();
 }

 #endregion

 }
}

There is a using statement to bring the LevelData class that I added into scope. There are two fields in
this class and properties to read their values, but not write them. The first, okPressed, determines how
the form was closed, by the OK button or the Cancel button. The second, LevelData, holds the
information off the form if the form was closed successfully. The constructor wires event handlers for
the Click events of the buttons.

In the handler for the Click event for btnOK I validate the form. If the Text property of tbLevelName
is null or empty I display a message box stating that a name must be entered for the level and exit the
method. Similarly, I display a message and exit if the Text property of tbMapName is null or empty.
There are then two local variables that will hold the conversion of the Text property of the Masked
Text Boxes into integers. I use the TrParse method to attempt to parse the Text property of mtbWidth.
If the return value is false the second half of the expression will not be evaluated. If the attempt was
successful I then check if the result is less than 1. If either evaluate to true I display a message and exit
the method. I do something similar for mtbHeight but work with height instead of width. You should
really do better evaluation than the map width and height less than 1. If the form passed validation I
create a new LevelData object using the Text properties of the two Text Boxes, the mapWidth and
mapHeight local variables, and new List<string> instance for the List<string> parameters. I then set
okPressed to true and close the form.

The handler for the Click event for btnCancel is much simpler. It just sets the okPressed field to false
and then closes the form.

I want to create a form for creating TilesetData objects. Right click the XLevelEditor, select Add and
then Windows Form. Name this new form FormNewTileset. My form looked like is on the next page.

There are quite a few controls on the form. There are six Labels, two Text Boxes, three Buttons, and
four Masked Text Boxes. The controls are again positioned in rows of two columns, except for the row
for selecting a tileset image name. This row has a third column, a Button, that is used to select the
image file associated with the tileset.

I set several of the properties for the form itself, shown in the next table.

Property Value
ControlBox FALSE
FormBorderStyle FixedDialog
Size 300, 240
StartPosition CenterParent
Text New Tileset

I'm going to do the controls like the last form a row at a time. The first controls to drag on are a Label
and a Text Box. Set the following properties for those controls.

Label
Property Value
(Name) lblTilesetName
Location 54, 10
Text Tileset Name:

Text Box
Property Value
(Name) tbTilesetName
Location 155, 5

For the next row you will need three controls, a Label, a Text Box, and a Button. Set these properties.

Label
Property Value
(Name) lblTilesetImageName

Location 12, 40
Text Tileset Image Name:

Text Box
Property Value
(Name) tbTilesetImage
Enabled FALSE
Location 155, 34

Button
Property Value
(Name) btnSelectImage
Location 261, 34
Size 28, 23
Text ...

The next four rows are sets of Labels and Masked Text Boxes. So, drag a Label and Masked Text
Box onto the form and set the following properties.

Label
Property Value
(Name) lblTileWidth
Location 74, 69
Text Tile Width:

Masked Text Box
Property Value
(Name) mtbTileWidth
Location 155, 62
Mask 000 (three zeros)
Size 34, 22

Drag another Label and Masked Text Box onto the form and set the following properties.

Label
Property Value
(Name) lblTileHeight
Location 74, 69
Text Tile Height:

Masked Text Box
Property Value
(Name) mtbTileHeight
Location 155, 90
Mask 000 (three zeros)
Size 34, 22

Drag another Label and Masked Text Box onto the form and set the following properties.

Label
Property Value
(Name) lblTilesWide
Location 17, 121
Text Number Tiles Wide:

Masked Text Box
Property Value
(Name) mtbTilesWide
Location 155, 118
Mask 000 (three zeros)
Size 34, 22

Drag another Label and Masked Text Box onto the form and set the following properties.

Label
Property Value
(Name) lblTilesHigh
Location 20, 150
Text Number Tiles High:

Masked Text Box
Property Value
(Name) mtbTilesHigh
Location 155, 147
Mask 000 (three zeros)
Size 34, 22

The last two controls to add are two Button controls. Add them and set these properties.

(Name) Location Size Text
btnOK 13, 142 75, 23 OK
btnCancel 106, 142 75, 23 Cancel

Now I'm going to add some code to FormNewTileset. Right click FormNewTileset in the solution
explorer and select View Code. Change the code to the following.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

using RpgLibrary.WorldClasses;

namespace XLevelEditor
{
 public partial class FormNewTileset : Form
 {
 #region Field Region

 bool okPressed;

 TilesetData tilesetData;

 #endregion

 #region Property Region

 public TilesetData TilesetData
 {
 get { return tilesetData; }
 }

 public bool OKPressed
 {
 get { return okPressed; }
 }

 #endregion

 #region Constructor Region

 public FormNewTileset()
 {
 InitializeComponent();

 btnSelectImage.Click += new EventHandler(btnSelectImage_Click);
 btnOK.Click += new EventHandler(btnOK_Click);
 btnCancel.Click += new EventHandler(btnCancel_Click);
 }

 #endregion

 #region Button Event Handler Region

 void btnSelectImage_Click(object sender, EventArgs e)
 {
 OpenFileDialog ofDialog = new OpenFileDialog();
 ofDialog.Filter = "Image Files|*.BMP;*.GIF;*.JPG;*.TGA;*.PNG";
 ofDialog.CheckFileExists = true;

 ofDialog.CheckPathExists = true;
 ofDialog.Multiselect = false;

 DialogResult result = ofDialog.ShowDialog();

 if (result == DialogResult.OK)
 {
 tbTilesetImage.Text = ofDialog.FileName;
 }
 }

 void btnOK_Click(object sender, EventArgs e)
 {
 if (string.IsNullOrEmpty(tbTilesetName.Text))
 {
 MessageBox.Show("You must enter a name for the tileset.");
 return;
 }

 if (string.IsNullOrEmpty(tbTilesetImage.Text))
 {
 MessageBox.Show("You must select an image for the tileset.");
 return;
 }

 int tileWidth = 0;
 int tileHeight = 0;
 int tilesWide = 0;
 int tilesHigh = 0;

 if (!int.TryParse(mtbTileWidth.Text, out tileWidth))
 {
 MessageBox.Show("Tile width must be an integer value.");
 return;
 }
 else if (tileWidth < 0)
 {
 MessageBox.Show("Tile width must me greater than zero.");
 return;
 }

 if (!int.TryParse(mtbTileHeight.Text, out tileHeight))
 {
 MessageBox.Show("Tile height must be an integer value.");
 return;
 }
 else if (tileHeight < 0)
 {
 MessageBox.Show("Tile height must be greater than zero.");
 return;
 }

 if (!int.TryParse(mtbTilesWide.Text, out tilesWide))
 {
 MessageBox.Show("Tiles wide must be an integer value.");
 return;
 }
 else if (tilesWide < 0)
 {
 MessageBox.Show("Tiles wide must me greater than zero.");
 return;
 }

 if (!int.TryParse(mtbTilesHigh.Text, out tilesHigh))
 {
 MessageBox.Show("Tiles high must be an integer value.");
 return;
 }
 else if (tilesHigh < 0)
 {

 MessageBox.Show("Tiles high must be greater than zero.");
 return;
 }

 tilesetData = new TilesetData();

 tilesetData.TilesetName = tbTilesetName.Text;
 tilesetData.TilesetImageName = tbTilesetImage.Text;
 tilesetData.TileWidthInPixels = tileWidth;
 tilesetData.TileHeightInPixels = tileHeight;
 tilesetData.TilesWide = tilesWide;
 tilesetData.TilesHigh = tilesHigh;

 okPressed = true;
 this.Close();
 }

 void btnCancel_Click(object sender, EventArgs e)
 {
 okPressed = false;
 this.Close();
 }

 #endregion
 }
}

There is a using statement to bring the TilesetData class into scope. The first field, okPressed, and is a
bool that will hold how the form was closed. The other field, tilesetData, is of type TilesetData will
hold an object if the form is successfully closed using the OK button. There are properties to expose the
values of the fields as read only, or get only. The constructor wires event handlers for the Click event of
all three buttons.

In the handler for btnSelectImage I create a OpenFileDialog object. I set the Filter property so that
the dialog will filter will show common image files. I set the CheckFileExsists and CheckPathExists
properties to true so that we are sure the file exists. I also set Multiselect to false so that the user can
only select one file. I capture the result of the ShowDialog method and compare it to OK. If the dialog
was closed using the OK button I set the Text property of tbTilesetImage to the FileName property of
the dialog.

The handler for btnOK does a lot of validation on the values on the form. If the Text property of either
tbTilesetName or tbTilesetImage is null or empty I display a message box and exit the method. There
are four local variables to hold the result of converting the Text property of the Masked Text Boxes to
integers. I use the TryParse method of the int class try and convert the Text properties. If the
conversion fails I display a message saying the value must be an integer value and exit the method. If it
succeeded I check to see if the value is less than 1. If it is less than 1 I display a message saying the
value must be greater than zero and exit the method. If the data on the form is valid I create a
TilesetData object and set the fields to the values from the form. I set the okPressed field to true and
then close the form. The handler for btnCancel sets the okPressed field to false and closes the form.

The last form that I want to create is a form for making new layers of the map. Right click the
XLevelEditor project in the solution explorer, select Add and then Windows Form. Name this new
form FormNewLayer. My finished form looked like is on the next page. Set the properties in the table
on the next page for the form.

Property Value
ControlBox FALSE
FormBorderStyle FixedDialog
Size 240, 230
StartPosition CenterParent
Text New Layer

There are a few controls on the form. There is a Label and a Text Box that are for getting the name of
the layer. There is a Check Box that if checked the layer will be filled with a specific tile and tileset.
There is a Group Box that I placed a pair of Label and Numeric Up And Down rows. The last
controls are buttons for closing the form. The way the form will work is that if the Check Box is
checked the map will be filled using the values from the Numeric Up And Down controls for the tile
index and tileset. Remember when you are drawing a layer that if a tile index or tileset index are -1 that
tile is skipped. So for the Numeric Up And Down controls I set the minimum value to -1 and the
starting value to -1 as well. I also set the maximum value to 512. You may want it higher depending on
the number of tiles in your tileset. It seemed to be a logical choice to me.

The first controls to drag onto the form are a Label and Text Box. Set the following properties for the
controls.

Label
Property Value
(Name) lblLayerName
Location 27, 15
Text Layer Name:

Text Box
Property Value
(Name) tbLayerName
Location 122, 12

Next drag a Check Box onto the form and set these properties.

Check Box
Property Value
(Name) cbFill
Checked TRUE
Location 12, 44
Text Fill Layer?

The next control to add is a Group Box. Set the following properties for the Group Box.

Group Box
Property Value
(Name) gbFillLayer
Location 12, 71
Size 210, 79
Text Fill With

Onto the Group Box drag a Label and a Numeric Up Down. Set the following properties for those
controls.

Label
Property Value
(Name) lblTileIndex
Location 23, 22
Text Tile Index:

Numeric Up Down
Property Value
(Name) nudTile
Location 101, 20
Maximum 512
Minimum -1
Size 84, 22
Value -1

Drag a second Label and Numeric Up Down onto the form and set these properties.

Label
Property Value
(Name) lblTilesetIndex
Location 4, 50
Text Tileset Index:

Numeric Up Down
Property Value
(Name) nudTileset
Location 101, 48

Maximum 512
Minimum -1
Size 84, 22
Value -1

The last two controls are the Button controls. Drag the two Buttons onto the form and set the
following values.

Buttons
(Name) Location Size Text
btnOK 30, 169 75, 23 OK
btnCancel 122, 169 75, 23 Cancel

Before I get to the code for this form I want to add another public constructor to the MapLayerData
class. I will be adding in two more parameters. One will be a tile index and the other will be a tilset
index. In that constructor I will fill the layer with tiles using the tile index and tileset index. Add the
following constructor to the MapLayerData class.

public MapLayerData(string mapLayerName, int width, int height, int tileIndex, int tileSet)
{
 MapLayerName = mapLayerName;
 Width = width;
 Height = height;

 Layer = new Tile[height * width];

 Tile tile = new Tile(tileIndex, tileSet);

 for (int y = 0; y < height; y++)
 for (int x = 0; x < width; x++)
 SetTile(x, y, tile);
}

There is a Tile variable called tile that is created using the parameters passed in. It is safe to do this
because the Tile is a structure and not a class. That makes it a value type and not a reference type. So if
you modify one of the Tile objects in the array it will not affect the others. There is then a set of nested
loops added to this constructor. The outer loop is for the Y coordinate and the inner loops is for the X
coordinate. I call the SetTile method passing in x, y, and the Tile I created before.

I want to extend the MapLayer class in the XRpgLibrary to include a static method that will return a
MapLayer from a MapLayerData. Add the following using statement and method to the MapLayer
class in the XRpgLibrary.

using RpgLibrary.WorldClasses;

public static MapLayer FromMapLayerData(MapLayerData data)
{
 MapLayer layer = new MapLayer(data.Width, data.Height);

 for (int y = 0; y < data.Height; y++)
 for (int x = 0; x < data.Width; x++)
 {
 layer.SetTile(

 x,
 y,
 data.GetTile(x, y).TileIndex,
 data.GetTile(x, y).TileSetIndex);
 }

 return layer;
}

The new method takes a MapLayerData parameter that is the object you want to convert. Inside the
method I create a new MapLayer instance using the Height and Width properties of the object passed
in. There is then a set of nested for loops. The outer loop will loop through the height of the layer and
the inner array will loop through the width of the layer. Inside the loop I use the SetTile method of the
MapLayer class to set the tile passing in values from the GetTile method of MapLayerData to get the
tile at the (x, y) coordinates from the loop variables.

I'm now going to add the code for FormNewLayer. Right click FormNewLayer in the XLevelEditor
and select View Code. Change the code to the following.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using RpgLibrary.WorldClasses;

namespace XLevelEditor
{
 public partial class FormNewLayer : Form
 {
 #region Field Region

 bool okPressed;

 int LayerWidth;
 int LayerHeight;

 MapLayerData mapLayerData;

 #endregion

 #region Property Region

 public bool OKPressed
 {
 get { return okPressed; }
 }

 public MapLayerData MapLayerData
 {
 get { return mapLayerData; }
 }

 #endregion

 #region Constructor Region

 public FormNewLayer(int width, int height)
 {
 InitializeComponent();

 LayerWidth = width;

 LayerHeight = height;

 btnOK.Click += new EventHandler(btnOK_Click);
 btnCancel.Click += new EventHandler(btnCancel_Click);
 }

 #endregion

 #region Button Event Handler Region

 void btnOK_Click(object sender, EventArgs e)
 {
 if (string.IsNullOrEmpty(tbLayerName.Text))
 {
 MessageBox.Show("You must enter a name for the layer.", "Missing Layer Name");
 return;
 }

 if (cbFill.Checked)
 {
 mapLayerData = new MapLayerData(
 tbLayerName.Text,
 LayerWidth,
 LayerHeight,
 (int)nudTile.Value,
 (int)nudTileset.Value);
 }
 else
 {
 mapLayerData = new MapLayerData(
 tbLayerName.Text,
 LayerWidth,
 LayerHeight);
 }

 okPressed = true;
 this.Close();
 }

 void btnCancel_Click(object sender, EventArgs e)
 {
 okPressed = false;
 this.Close();
 }

 #endregion

 }
}

There is a using statement to bring the WorldClasses from the RpgLibrary into scope, namely the
MapLayerData class. There are four fields in the class. The first, okPressed, will be used to determine
how the form closed. Then next two, LayerWidth and LayerHeight, are the width and height of the
map. I'm not allowing layers of varying sizes so all layers should have the same height and width. The
last field is a MapLayerData object. If the OK button is pressed I will set it to a new MapLayerData
object. There are properties to expose the okPressed and mapLayerData fields as get only.

Forms are just classes and because they are just classes you can create new constructors for them to get
values needed by the form to the form. I changed the constructor to take two integer parameters, the
width and height of the map. In the constructor I set the LayerWidth and LayerHeight fields with the
values passed in. I then wire the Click event for both of the buttons.

In the event handler for the Click event of btnOK I check to see if the Text property of tbLayerName

is null or empty. If it is I display a message box saying that a name for the layer is required and exit the
method. I then check the Checked property of cbFill to see if the map should be filled with a specific
tile. If that is true I create a new map using the Text property of tbLayerName, the LayerWidth and
LayerHeight fields, and the Value property of nudTile and nudTileset cast to an integer. The Value
property of the Numeric Up and Down control is a decimal so you need to convert it to an integer. If it
wasn't clicked I create a new layer using the Text property of tbLayerName and the LayerWidth and
LayerHeight fields. I then set okPressed to true and close the form.

The code for the Click event of btnCancel you've seen several times now. I set okPressed to false and
close the form.

I'm going to stop this tutorial here and continue it in a B part. The plan for this tutorial was to get
started with the level editor and we are well under way. I encourage you to visit the news page of my
site, XNA Game Programming Adventures , for the latest news on my tutorials.

Good luck in your game programming adventures!

Jamie McMahon

http://xnagpa.net/news.html
http://xnagpa.net/news.html

