
XNA 4.0 RPG Tutorials

Part 21

Items in the Game

I'm writing these tutorials for the new XNA 4.0 framework. The tutorials will make more sense if they
are read in order. You can find the list of tutorials on the XNA 4.0 RPG tutorials page of my web site. I
will be making my version of the project available for download at the end of each tutorial. It will be
included on the page that links to the tutorials.

We have been working mostly with data for items and the editors. In this tutorial I'm going to work on
how items will be handled in the game. So a brief discussion on how I intend to implement items is
needed.

In the RpgLibrary there are classes that hold the basic data of items and classes that represent the
actual items. I'm going to add a class to the XRpgLibrary that represent items in the game. This class
will have a Texture2D associated with it so you can have an icon associated with an item. A character
can have these items equipped in different slots. They can have armor in the different armor locations
for example. You are going to want to manage all of the items in the game as well as the items the party
is carrying. This will be a party based engine but you can easily use it with just a single character if you
so desire. There will be a party backpack that will hold items the party is carrying.

The first step is to create a class that will represent an item in the game. Right click the ItemClasses
folder in the XRpgLibrary, select Add and then Class. Name this new class GameItem. The code for
this class follows next.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;

using RpgLibrary.ItemClasses;

namespace XRpgLibrary.ItemClasses
{
 public class GameItem
 {
 #region Field Region

 public Vector2 Position;

 private Texture2D image;
 private Rectangle? sourceRectangle;
 private readonly BaseItem baseItem;
 private Type type;

 #endregion

 #region Property Region

http://xnagpa.net/xnarpg4tutorials.html

 public Texture2D Image
 {
 get { return image; }
 }

 public Rectangle? SourceRectangle
 {
 get { return sourceRectangle; }
 set { sourceRectangle = value; }
 }

 public BaseItem Item
 {
 get { return baseItem; }
 }

 public Type Type
 {
 get { return type; }
 }

 #endregion

 #region Constructor Region

 public GameItem(BaseItem item, Texture2D texture, Rectangle? source)
 {
 baseItem = item;
 image = texture;
 sourceRectangle = source;

 type = item.GetType();
 }

 #endregion

 #region Method Region

 public void Draw(SpriteBatch spriteBatch)
 {
 spriteBatch.Draw(image, Position, sourceRectangle, Color.White);
 }

 #endregion

 #region Virtual Method region
 #endregion
 }
}

I will be adding in more to this class as the game evolves. It is just to get things started. The reason that
this class is in the XRpgLibrary rather than the RpgLibrary is that you may want to draw the item. In
that case you will want access to the XNA framework classes. We could move the RpgLibrary into the
XRpgLibrary, that would certainly be a viable option. I'm trying to keep the data separate and at this
time it would be a major headache to try and fix everything. The way things are organized will work
well enough.

In the class itself I added a couple using statements. There are two to bring some XNA framework
classes into scope and one for the ItemClasses from the RpgLibrary.

There are a few fields in the class. The first is public and is a Vector2 called Position. We really don't
care where the item will be drawn so I decided to simplify things and just make it public. Another
reason is how C# deals with properties that are structures, like Vector2. If you have a Vector2 property

you can't assign to the individual properties of the Vector2, the X and Y values for example. It has to
do with how C# handles value types and reference types. Since Vector2 is a struct rather than a class it
is a value type. The other four fields are all private. The image field is a Texture2D. The next field is a
nullable field, indicated by the ? after the type, and is the source rectangle of the image field. In the
overload of the Draw method of SpriteBatch that I use it will accept null for the source rectangle.
There is then a BaseItem field for the actual item. This field is marked readonly so it can only be
assigned to as a class initializer or in the constructor. There is also a Type field for the type of the item.
This isn't to be confused with the string type field from BaseItem. This is the actual type associated
with the BaseItem like Weapon, Armor, or Shield.

There are properties to expose some of the fields. The Image property is read only, or just has a get
part, and returns the image property. I included it as it may be useful. The property is a read and write,
get and set, property and is also nullable. It either returns or sets the sourceRectangle field. The Item
property is also read only. The reason is the baseItem field is marked readonly and can't be set using
the property anyway. The Type property is read only and returns the type field.

There is just one constructor and it takes three parameters. The first is a BaseItem which is the actual
item, a Texture2D for the texture of the image, and a nullable Rectangle for the source rectangle. The
constructor sets the fields based on the values passed in. To set the type field I use the GetType method
that returns the type associated with a variable. It won't return BaseItem if you pass a Weapon in. It
will return Weapon. Even if the variable is a BaseItem variable that you assign a Weapon to. C# is
smart enough to know the inherited type when you're using polymorphism.

At the moment there is just the one method in this class, the Draw method that takes as a parameter an
active SpriteBatch. What I mean by active is in between calls to Begin and End. It calls the Draw
method of the SpriteBatch with the Texture2D, Vector2, Rectangle?, and Color.

I'm going to add a global item manager first that holds all items in the game. Right click the
ItemClasses folder in the XrpgLibrary project, select Add and then class. Name this new class
GameItemManager. The code for that class follows next.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;

using RpgLibrary.ItemClasses;

namespace XRpgLibrary.ItemClasses
{
 public class GameItemManager
 {
 #region Field Region

 readonly Dictionary<string, GameItem> gameItems = new Dictionary<string, GameItem>();
 static SpriteFont spriteFont;

 #endregion

 #region Property Region

 public Dictionary<string, GameItem> GameItems
 {

 get { return gameItems; }
 }

 public static SpriteFont SpriteFont
 {
 get { return spriteFont; }
 private set { spriteFont = value; }
 }

 #endregion

 #region Constructor Region

 public GameItemManager(SpriteFont spriteFont)
 {
 SpriteFont = spriteFont;
 }

 #endregion

 #region Method Region
 #endregion

 #region Virtual Method region
 #endregion
 }
}

It is a fairly basic class. I added in using statement for a couple XNA framework name spaces and for
the ItemClasses name space of the RpgLibrary. There are two fields in the class. The first is a
Dictionary<string, GameItem> and is readonly. The second is a SpriteFont and it is static. There are
properties to expose both fields. For the SpriteFont property I include a private set, or write. The
constructor takes a SpriteFont parameter and sets the spriteFont field using the private write property.
This class is not for inventory. It is to hold all of the basic items in the game. Items in inventory will be
handled a little differently. What this class allows is you can read in all items at run time and if you
need to add an item to the player's inventory you can retrieve it from this class. I've been considering
allowing the player to be able to upgrade items. Some items can contain sockets that can be filled to
create interesting effects. The SpriteFont field will be useful if you want to draw text related to an
item.

You are going to need images for item icons. I went to one of my favorite spots when looking for place
holder graphics, http://opengameart.org. They have an excellent collection of free art for open source
games. I found an image by an artist there, Jetrel, that I modified to take the background color out of
the image. You can find my image at http://xnagpa.net/xna4/downloads/itemimages.zip. Download the
file and extract it to a directory. Right click the ObjectSprites in the EyesOfTheDragonContent
folder, select Add and then Existing Item. Navigate to where you extracted the file and add in the
itemimages.png file.

I'm going to expand the Character class so that a character can have some items equipped as well
being able to equip and unequip items. Change the Character class in the XRpgLibrary project to the
following.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using RpgLibrary.CharacterClasses;

http://xnagpa.net/xna4/downloads/itemimages.zip
http://opengameart.org/user/402
http://opengameart.org/

using XRpgLibrary.SpriteClasses;
using XRpgLibrary.ItemClasses;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;

namespace XRpgLibrary.CharacterClasses
{
 public class Character
 {
 #region Field Region

 protected Entity entity;
 protected AnimatedSprite sprite;

 // Armor fields

 protected GameItem head;
 protected GameItem body;
 protected GameItem hands;
 protected GameItem feet;

 // Weapon/Shield fields

 protected GameItem mainHand;
 protected GameItem offHand;

 protected int handsFree;

 #endregion

 #region Property Region

 public Entity Entity
 {
 get { return entity; }
 }

 public AnimatedSprite Sprite
 {
 get { return sprite; }
 }

 // Armor properties

 public GameItem Head
 {
 get { return head; }
 }

 public GameItem Body
 {
 get { return body; }
 }

 public GameItem Hands
 {
 get { return hands; }
 }

 public GameItem Feet
 {
 get { return feet; }
 }

 // Weapon/Shield properties

 public GameItem MainHand
 {
 get { return mainHand; }

 }

 public GameItem OffHand
 {
 get { return offHand; }
 }

 public int HandsFree
 {
 get { return handsFree; }
 }

 #endregion

 #region Constructor Region

 public Character(Entity entity, AnimatedSprite sprite)
 {
 this.entity = entity;
 this.sprite = sprite;
 }

 #endregion

 #region Method Region
 #endregion

 #region Virtual Method region

 public virtual void Update(GameTime gameTime)
 {
 entity.Update(gameTime.ElapsedGameTime);
 sprite.Update(gameTime);
 }

 public virtual void Draw(GameTime gameTime, SpriteBatch spriteBatch)
 {
 sprite.Draw(gameTime, spriteBatch);
 }

 public virtual bool Equip(GameItem gameItem)
 {
 bool success = false;

 return success;
 }

 public virtual bool Unequip(GameItem gameItem)
 {
 bool success = false;

 return success;
 }

 #endregion
 }
}

So, what is new here. I added in a using statement to bring the ItemClasses of the XRpgLibrary into
scope. I included several new GameItem fields and properties to expose the fields. I place comments
above the two sets to divide them logically. The first set of fields has to do with armor. There a four
regions that armor will fit: head, body, hands, and feet. So, I have four fields for those regions named
head, body, hands, and feet. Since characters have two hands I have two fields for hands, mainHand
and offHand. I could have used right and left hand here but decided to go with main and off. There is
also another field, handsFree, that is an integer that represents the number of free hands. There are
read only, get only, properties to expose all of the new fields. I also included two new virtual methods

Equip and Unequip that return a bool and take a GameItem parameter. These method can be called to
equip and unequip items. They will be expanded on later. Since they are virtual can override them in
any class that inherits from Character if needed. I have them returning a bool value that tells if
equipping or unequipping the item was successful. By default it will be unsuccessful as you can see I
set the success local variable to false and return it at the end of the method.

The last class I want to add is a class for the items the party is carrying. You may want to limit the
number of items in inventory. I'm not going to but it could easily be added. For this I'm going to create
a class called Backpack. The Backpack will be added to the class that will represent the party of
characters in the game. This is going to be a basic class for the moment and is more of a place holder
that will be expanded upon. The Backpack will allow for unique items, like potions that are made by a
character with a high herbalism skill will be more potent than a less skilled character. It also allows for
items with sockets. Right click the ItemClasses folder in the XRpgLibrary folder, select Add and then
Class. Name this new class Backpack. The code for that class follows next.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace XRpgLibrary.ItemClasses
{
 public class Backpack
 {
 #region Field Region

 readonly List<GameItem> items;

 #endregion

 #region Property Region

 public List<GameItem> Items
 {
 get { return items; }
 }

 public int Capacity
 {
 get { return items.Count; }
 }

 #endregion

 #region Constructor Region

 public Backpack()
 {
 items = new List<GameItem>();
 }

 #endregion

 #region Method Region

 public void AddItem(GameItem gameItem)
 {
 items.Add(gameItem);
 }

 public void RemoveItem(GameItem gameItem)
 {
 items.Remove(gameItem);

 }

 #endregion

 #region Virtual Method region
 #endregion
 }
}

This is just a basic class to get us up and going. There is just the one field in the class that is a
List<GameItem> that represents the items in the backpack. I used a generic List rather than a
Dictionary as you can have multiple items by the same name. These multiple items can also have
different properties. I will explain more in a bit. The items field is readonly so that it can only be
assigned to as an initializer or in the constructor. There are two properties in the class. The first is used
to return the items field. The second may be a bit of a misnomer. I added a property, Capacity, that
returns the number of items in the items field. You would expect capacity to be the amount an object
can hold, not the amount in the object. It will work well enough though. The constructor just creates a
new List<GameItem>. I added in two methods: GetItem and RemoveItem. There purpose is to get
and remove items from the backpack. Here you don't want to work on copies of the items. You want to
work on the items themselves. For example, if you fill a socket on a weapon you want to affect the
actual weapon in the backpack and not a copy of the weapon. I will get into that more in a future
tutorial.

I'm going to end this tutorial here. The plan was to add in some basic functionality for handling
inventory in the game. I encourage you to visit the news page of my site, XNA Game Programming
Adventures, for the latest news on my tutorials.

Good luck in your game programming adventures!

Jamie McMahon

http://xnagpa.net/news.html
http://xnagpa.net/news.html
http://xnagpa.net/news.html

