
XNA 4.0 RPG Tutorials

Part 20

More on Skills

I'm writing these tutorials for the new XNA 4.0 framework. The tutorials will make more sense if they
are read in order. You can find the list of tutorials on the XNA 4.0 RPG tutorials page of my web site. I
will be making my version of the project available for download at the end of each tutorial. It will be
included on the page that links to the tutorials.

In this tutorial I'm going to do a little more work on skills. What I plan to do is to add in a screen to
allow the player to spend their skill points. Initially I will move to this screen from the main screen for
creating characters, CharacterGeneratorScreen. First thing though, I kind of goofed. I shouldn't have
had you navigate to the EyesOfTheDragonContent folder for entering skills. You should have added a
Skills folder inside of the Game folder in the EyesOfTheDragonContent folder. Easy enough to fix
though. Like you did for adding the Game folder to the EyesOfTheDragonContent folder open up a
windows explorer window and navigate to the Game folder in the EyesOfTheDragonContent folder.
Select the Skills folder from the Game folder in windows explorer and drag it onto the Game folder in
the solution explorer.

I want to first add a new control similar to the LeftRightSelector. The difference is that this control
will work with numeric values instead of strings, much like the Numeric Up Down control I've been
using in the editor, which is also called a SpinBox. In the XRpgLibrary right click the Controls
folder, select Add and then Class. Name this new class SpinBox. This is the code for that class.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;

namespace XRpgLibrary.Controls
{
 public class SpinBox : Control
 {
 #region Event Region

 public event EventHandler SelectionChanged;

 #endregion

 #region Field Region

 int current;
 int minValue;
 int maxValue;
 int increment;

 Texture2D leftTexture;
 Texture2D rightTexture;

http://xnagpa.net/xnarpg4tutorials.html

 Texture2D stopTexture;

 Color selectedColor = Color.Red;
 int width;

 #endregion

 #region Property Region

 public int MinimumValue
 {
 get { return minValue; }
 set
 {
 if (value > maxValue)
 minValue = maxValue;
 else
 minValue = value;
 }
 }

 public int MaximumValue
 {
 get { return maxValue; }
 set
 {
 if (value < minValue)
 maxValue = minValue;
 else
 maxValue = value;
 }
 }

 public int Value
 {
 get { return current; }
 set
 {
 if (value < minValue)
 current = minValue;
 else if (value > maxValue)
 current = maxValue;
 else
 current = value;
 }
 }

 public int Increment
 {
 get { return increment; }
 set { increment = value; }
 }

 public int Width
 {
 get { return width; }
 set { width = value; }
 }

 public Color SelectedColor
 {
 get { return selectedColor; }
 set { selectedColor = value; }
 }

 #endregion

 #region Constructor Region

 public SpinBox(Texture2D leftArrow, Texture2D rightArrow, Texture2D stop)
 {
 minValue = 0;
 maxValue = 100;
 increment = 1;
 width = 50;

 leftTexture = leftArrow;
 rightTexture = rightArrow;
 stopTexture = stop;

 TabStop = true;
 Color = Color.White;
 }

 #endregion

 #region Method Region
 #endregion

 #region Virtual Method region

 public override void Update(GameTime gameTime)
 {
 }

 public override void Draw(SpriteBatch spriteBatch)
 {
 Vector2 drawTo = position;

 if (current != minValue)
 spriteBatch.Draw(leftTexture, drawTo, Color.White);
 else
 spriteBatch.Draw(stopTexture, drawTo, Color.White);

 drawTo.X += leftTexture.Width + 5f;
 string currentValue = current.ToString();
 float itemWidth = spriteFont.MeasureString(currentValue).X;
 float offset = (width - itemWidth) / 2;

 drawTo.X += offset;

 if (hasFocus)
 spriteBatch.DrawString(spriteFont, currentValue, drawTo, selectedColor);
 else
 spriteBatch.DrawString(spriteFont, currentValue, drawTo, Color);

 drawTo.X += -1 * offset + width + 5f;

 if (current != maxValue)
 spriteBatch.Draw(rightTexture, drawTo, Color.White);
 else
 spriteBatch.Draw(stopTexture, drawTo, Color.White);
 }

 public override void HandleInput(PlayerIndex playerIndex)
 {
 if (InputHandler.ButtonReleased(Buttons.LeftThumbstickLeft, playerIndex) ||
 InputHandler.ButtonReleased(Buttons.DPadLeft, playerIndex) ||
 InputHandler.KeyReleased(Keys.Left))
 {
 current -= increment;
 if (current < minValue)
 current = minValue;
 OnSelectionChanged();
 }

 if (InputHandler.ButtonReleased(Buttons.LeftThumbstickRight, playerIndex) ||
 InputHandler.ButtonReleased(Buttons.DPadRight, playerIndex) ||

 InputHandler.KeyReleased(Keys.Right))
 {
 current += increment;
 if (current > maxValue)
 current = maxValue;
 OnSelectionChanged();
 }
 }

 protected virtual void OnSelectionChanged()
 {
 if (SelectionChanged != null)
 SelectionChanged(this, null);
 }

 #endregion
 }
}

This should look a little familiar. The biggest difference is that you are working with numbers rather
than strings. There are using statements to bring some of the XNA framework classes into scope. I
included an event like in the LeftRightSelector called SelectionChanged. This event will be triggered
if the selection changed, much like the LeftRightSelector.

There are four integer fields: current, minValue, maxValue, and increment. They hold the current
value of the SpinBox, the minimum and maximum values and how much to increment when right is
pressed or decrement when left is pressed. The fields leftTexture, rightTexture, and stopTexture are
from the LeftRightSelector. The left and right ones will let the player know they can move left or right
and the stop they can't move in a specific direction. The last field, width, is the width of the SpinBox.

There are a number of properties to expose the values and many do error checking. MinimumValue is
for the minimum value. The set part checks to see if the value passed to the property is greater than the
maximum value. If it is it sets the minimum value to the maximum value. MaximumValue is for the
maximum value. The set part checks if the value passed in is less than the minimum value. If it is it sets
the maximum value to be the minimum value. Otherwise they set the minimum or maximum to the
value passed in. The Value property exposed the current field. If the value is less than the minimum
value current is set to be the minimum value. If it is greater than the maximum value it is set to be the
maximum value. Otherwise it is set to the value passed in. The Increment property should do some
sort of validation. You don't want the increment to be greater than the difference between the minimum
and maximum values. You also don't want it to be less than or equal to zero. For now it is fine but
something that should probably be looked into. The Width property exposes the width field. Again,
you should probably do a little validation here but we will just be careful. The last property is for the
selected color and is called SelectedColor. It is just a simple get and set property.

The constructor for this class takes three Texture2D parameter. The first is a left pointing arrow, the
second a right pointing arrow, and the third a stop symbol. I set a few default values for the SpinBox
first. The minimum and maximum values are set to 0 and 100 respectively. The increment field is set
to be 1 and the width field to 50. I set the Texture2D fields to the values passed to the constructor. I
also set TabStop to true and Color to white.

The Draw method is similar to that of the LeftRightSelector. There is a local variable to hold where to
draw an element of the SpinBox. I check to see if current is not equal to minValue. If it isn't then I
draw the left arrow. Otherwise I draw the stop bar. I increment the X property of drawTo by the width
of the left arrow and 5 pixels for padding. I create a string from current called currentValue. I then

measure the width of currentValue using the MeasureString method. I then create an offset that will
center the item and increment the X value of drawTo. I check the hasFocus field to determine what
color to draw the item in and draw it in the appropriate color. By comparing current to maxValue I
determine if I should draw the right arrow or the stop bar.

The HandleInput method first checks to see if the player released the left thumb stick left, direction
pad left, or left arrow key left. I then decrement current by increment. If current is less than
minValue I set current to be minValue. I also call the OnSelectionChanged method that will check if
the event SelectionChanged is subscribed to and should be fired. I then check if the player released the
left thumb stick right, the direction pad right, or the right arrow key. If so, I increment current by the
icrement field. If current is greater than maxValue I set current to be maxValue. I then call the
OnSelectionChanged method to see if the event should be fired.

I had planned on using the SpinBox control in this tutorial. After trying to work with it for a bit I found
it wasn't really the best choice for the job and I decided to go a different route that was simpler to
implement. The control will be useful down the road so I kept it in the tutorial.

The next step is to add a screen to handle distributing skill points. Right click the GameScreens in the
EyesOfTheDragon project, select Add and then Class. Name this new class SkillScreen. The code for
that screen follows next.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;
using Microsoft.Xna.Framework.Content;

using XRpgLibrary;
using XRpgLibrary.Controls;
using RpgLibrary.SkillClasses;

namespace EyesOfTheDragon.GameScreens
{
 internal class SkillLabelSet
 {
 internal Label Label;
 internal LinkLabel LinkLabel;

 internal SkillLabelSet(Label label, LinkLabel linkLabel)
 {
 Label = label;
 LinkLabel = linkLabel;
 }
 }

 public class SkillScreen : BaseGameState
 {
 #region Field Region

 int skillPoints;
 int unassignedPoints;

 PictureBox backgroundImage;
 Label pointsRemaining;

 List<SkillLabelSet> skillLabels = new List<SkillLabelSet>();

 Stack<string> undoSkill = new Stack<string>();
 EventHandler linkLabelHandler;

 #endregion

 #region Property Region

 public int SkillPoints
 {
 get { return skillPoints; }
 set
 {
 skillPoints = value;
 unassignedPoints = value;
 }
 }

 #endregion

 #region Constructor Region

 public SkillScreen(Game game, GameStateManager manager)
 : base(game, manager)
 {
 linkLabelHandler = new EventHandler(addSkillLabel_Selected);
 }

 #endregion

 #region Method Region
 #endregion

 #region Virtual Method region
 #endregion

 #region XNA Method Region

 public override void Initialize()
 {
 base.Initialize();
 }

 protected override void LoadContent()
 {
 base.LoadContent();

 ContentManager Content = GameRef.Content;

 CreateControls(Content);
 }

 private void CreateControls(ContentManager Content)
 {
 backgroundImage = new PictureBox(
 Game.Content.Load<Texture2D>(@"Backgrounds\titlescreen"),
 GameRef.ScreenRectangle);
 ControlManager.Add(backgroundImage);

 string skillPath = Content.RootDirectory + @"\Game\Skills\";
 string[] skillFiles = Directory.GetFiles(skillPath, "*.xnb");

 for (int i = 0; i < skillFiles.Length; i++)
 skillFiles[i] = @"Game\Skills\" +
Path.GetFileNameWithoutExtension(skillFiles[i]);

 List<SkillData> skillData = new List<SkillData>();

 Vector2 nextControlPosition = new Vector2(300, 150);

 pointsRemaining = new Label();

 pointsRemaining.Text = "Skill Points: " + unassignedPoints.ToString();
 pointsRemaining.Position = nextControlPosition;

 nextControlPosition.Y += ControlManager.SpriteFont.LineSpacing + 10f;

 ControlManager.Add(pointsRemaining);

 foreach (string s in skillFiles)
 {
 SkillData data = Content.Load<SkillData>(s);

 Label label = new Label();
 label.Text = data.Name;
 label.Type = data.Name;

 label.Position = nextControlPosition;

 LinkLabel linkLabel = new LinkLabel();
 linkLabel.TabStop = true;
 linkLabel.Text = "+";
 linkLabel.Type = data.Name;

 linkLabel.Position = new Vector2(
 nextControlPosition.X + 350,
 nextControlPosition.Y);

 nextControlPosition.Y += ControlManager.SpriteFont.LineSpacing + 10f;

 linkLabel.Selected += addSkillLabel_Selected;

 ControlManager.Add(label);
 ControlManager.Add(linkLabel);

 skillLabels.Add(new SkillLabelSet(label, linkLabel));
 }

 nextControlPosition.Y += ControlManager.SpriteFont.LineSpacing + 10f;

 LinkLabel undoLabel = new LinkLabel();
 undoLabel.Text = "Undo";
 undoLabel.Position = nextControlPosition;
 undoLabel.TabStop = true;
 undoLabel.Selected += new EventHandler(undoLabel_Selected);
 nextControlPosition.Y += ControlManager.SpriteFont.LineSpacing + 10f;

 ControlManager.Add(undoLabel);

 LinkLabel acceptLabel = new LinkLabel();
 acceptLabel.Text = "Accept Changes";
 acceptLabel.Position = nextControlPosition;
 acceptLabel.TabStop = true;
 acceptLabel.Selected += new EventHandler(acceptLabel_Selected);

 ControlManager.Add(acceptLabel);
 ControlManager.NextControl();
 }

 void acceptLabel_Selected(object sender, EventArgs e)
 {
 undoSkill.Clear();
 StateManager.ChangeState(GameRef.GamePlayScreen);
 }

 void undoLabel_Selected(object sender, EventArgs e)
 {
 if (unassignedPoints == skillPoints)
 return;

 string skillName = undoSkill.Peek();
 undoSkill.Pop();

 unassignedPoints++;

 // Update the skill points for the appropriate skill
 pointsRemaining.Text = "Skill Points: " + unassignedPoints.ToString();
 }

 void addSkillLabel_Selected(object sender, EventArgs e)
 {
 if (unassignedPoints <= 0)
 return;

 string skillName = ((LinkLabel)sender).Type;
 undoSkill.Push(skillName);
 unassignedPoints--;

 // Update the skill points for the appropriate skill

 pointsRemaining.Text = "Skill Points: " + unassignedPoints.ToString();
 }

 public override void Update(GameTime gameTime)
 {
 ControlManager.Update(gameTime, PlayerIndex.One);
 base.Update(gameTime);
 }

 public override void Draw(GameTime gameTime)
 {
 GameRef.SpriteBatch.Begin();

 base.Draw(gameTime);

 ControlManager.Draw(GameRef.SpriteBatch);

 GameRef.SpriteBatch.End();
 }

 #endregion
 }
}

There are several using statements that I added to this class. I needed class from the System.IO name
space for finding all of the skills in the game. There are also using statements to bring a few of the
XNA framework classes into scope. I also added using statements to bring some of the XRpgLibrary
and RpgLibrary classes into scope as well.

There is a second class in the code for the SkillScreen called SkillLabelSet. Its purpose is to hold a
pair of values: a Label and a LinkLabel. For this tutorial it isn't too important but it will be down the
road. It is an internal class. The internal access modifier means that the member is public inside of the
assembly and private outside of the assembly. So, what is an assembly? Example of assemblies are our
game and our libraries. They are a collection of types and resources that are built to work together and
form a logical unit of functionality.

The SkillScreen class itself inherits from the BaseGameState class so it can be used in the state
manager and gives us access to a few protected fields. There are several fields in this class. The first,
skillPoints, is the total number of skill points the player has to spend. The next, unassignedPoints, is
the number of points the player has left to spend. The backgroundImage field is for the background
image of the screen, exactly like the other screens that use a background image. The pointsRemaining
Label will be used to let the player know how many points they have left to spend on skills.
The next field is a List<SkillLabelSet> called skillLabels. The reason this field is hear is that we are
reading in our skills at run time rather than having them hard coded. If they were hard coded our job

would be simpler as we could just design the screen statically rather than dynamically. This is an
example of how we are making more of an engine than a game. The engine can be easily modified
using data files to make the game you want rather than modifying the code. The next field is a
Stack<string> called undoSkill. I decided it would be nice to include an undo feature when spending
skill points. Using a stack is an easy way to implement an undo system. When you perform an action
you push that action onto the stack. If you want to undo the action, you pop it off the stack and reverse
the action.

The last field may have many of you scratching your heads. It is an EventHandler field named
linkLabelHandler. This field will be used to wire event handlers for the LinkLabels in the
SkillLabelSet. The LinkLabels will be generated dynamically. You don't know how many of them
there will be. You want to wire events to them but how do you create an event handler dynamically?
The way I decided to handle it was to have an EventHandler field and create an instance of that event
handler in the constructor. Then for any control that wants to implement that event you can assign the
field.

I'm sure there are a lot of you scratching your heads here. This is an advanced topic and even people
who've been programming for years struggle with it when they see it. I'm not going into events and
event handlers in this tutorial. I'm going to be writing a tutorial, out side of the RPG tutorials, that deals
with events and event handlers. As I said, they cam be a complex topic and deserve a tutorial of their
own.

I also included a single property call SkillPoints. This property is used to get the skillPoints field and
set the skillPoints and unassignedPoints. I don't want to allow setting the unassignedPoints directly.
That could lead to extra skill points being available. Using the property to set them makes sure that
initially they are the same as the skill points.

What the constructor does is create a new EventHandler called addSkillLabel_Selected. Later on in
the class you will see there is a method addSkillLabel_Selected. That is the implementation of the
event handling code.

The LoadContent method creates a local variable Content of type ContentManager. I did this as I
will be using it a lot. It then calls a method, CreateControls, passing in the variable Content.

CreateControls, as the name applies, creates the controls on the screen. Like in other screens it creates
a PictureBox for the background of the screen and adds it to the ControlManager. There is next a
string that I set to be the RootDirectory property of Content plus \Game\Skills\ which is where the
skills are compiled to by the Content Pipeline. There is next an array of strings called skillFiles that
will hold all of the files in the Skills directory. I use the GetFiles method of the Directory class to get
the file name passing in the path and *.xnb for the type of files. xnb is the extension that the Content
Pipeline gave our content when it compiled it. Using xnb files protects your assets from being meddled
with. If you were storing things as straight text an industrious person could get into the text and make
changes to the text. Your game could either be, at best, broken, at worst perverted and passed around
with your name attached to it. That is why I called the second state the worst state as it is almost a form
of identity theft. There is next a for loop that loops through all of the file names that were returned. I
create a new path to the file with out the extension using the GetFileNameWithoutExtension method
of the Path class.

Next I have a local variable that is a List<SkillData> called skillData that will hold all of the skills
temporarily. The nextControlPostion variable is a Vector2 and is used for positioning controls on the
screen. I then create the Label for pointsRemaining. It set its Text property to be Skill Points: plus
the value of unassignedPoints converted to a string. I set its Position property to nextControlPosition
and then increase the Y value of nextControlPosition by the LineSpacing property of the SpriteFont
of ControlManager plus 10 pixels. I then add the Label to the ControlManager.

There is then a foreach loop that loops through all of the strings in skillFiles. I use the Load method of
the Content Manager to load in the SkillData with that name. I create a Label and set its Text and
Type properties to the Name property of the SkillData object. I set the Position property of the Label
to be nextControlPosition. I then create a LinkLabel, set its TabStop property to true, its Text
property to + and its Type property to the Name of the SkillData object. I set the Position property of
the LinkLabel to be the X value of nextControlPosition plus 350 pixel and the same Y value of
nextControlPosition. I then increment the Y value of nextControPosition by LineSpacing and 10
pixels. I then wire the event handler of the Selected event to be addSkillLabel_Selected. I don't have
to use new as I already created a handler in the constructor. I can just assign the handler that I created
earlier. I add the Label and LinkLabel to the Control Manager.

After the loop I increment the Y value of nextControlPosition by LineSpacing plus 10 pixels. I then
create another LinkLabel called undoLabel that will handle if the player changes their mind about
assigning skill points. I set its Text property to Undo, its Position to nextControlPosition, and
TabStop to true. I then wire a new event handler for the Selected event. I increase the Y value of
nextControlPosition by LineSpacing plus 10 pixels. I then add the LinkLabel to the Control
Manager.

I then create one more LinkLabel called acceptLabel that allows the player to accept their choices. I
set Text to Accept Changes, Position to nextControlPosition and TabStop to true. I then wire the
handler for the Selected Event. I then add the control to the Control Manager and call the
NextControl method of the Control Manager to move to the first control.

Next there are the event handlers. The acceptLabel_Selected method handles if the player has
accepted changes. If they have, I clear the undoSkill stack so there is nothing to be undone. I then call
the ChangeState method passing in the GamePlayScreen.

The undoLabel_Selected method handles the player wanting to undo an assignment of skill points. If
the unassignedPoints and skillPoints fields are the same there is nothing to undo so I exit the method.
I use the Peek method of the Stack class to get the value on top of the stack. I then pop the top member
off of the stack. I increment the unassignedPoints field. There is a comment next that you will want to
update the skill points for the skill of the player. I haven't added the data for the player yet so I can't do
that. I then update the Text property of the pointsRemaining label to be the points left.

The addSkillLabel_Selected method handles the player wanting to assign a skill point to a skill. If
unassignedPoints is less than or equal to 0 you don't want to assign any points. So I exit the method. I
get the name of the skill using the Type property of the LinkLabel. The sender parameter is what
triggered the event, in this case a LinkLabel. So, the order of operations is first to cast sender to be a
LinkLabel and then use that to get the Type property. The inner brackets will be assessed before the
other one. I then push skillName onto the stack and decrement unassignedPoints. There is another
comment about work having to be done like in the previous method. I then update the Text property of
the pointsRemaining label to be the points left.

Let's add this new screen to the game. The first thing to do is to add a field of SkillScreen to the
Game1 class and create it in the constructor. Add this field to the Game State Region and change the
constructor to the following.

public SkillScreen SkillScreen;

public Game1()
{
 graphics = new GraphicsDeviceManager(this);

 graphics.PreferredBackBufferWidth = screenWidth;
 graphics.PreferredBackBufferHeight = screenHeight;

 ScreenRectangle = new Rectangle(
 0,
 0,
 screenWidth,
 screenHeight);

 Content.RootDirectory = "Content";

 Components.Add(new InputHandler(this));

 stateManager = new GameStateManager(this);
 Components.Add(stateManager);

 TitleScreen = new TitleScreen(this, stateManager);
 StartMenuScreen = new StartMenuScreen(this, stateManager);
 GamePlayScreen = new GamePlayScreen(this, stateManager);
 CharacterGeneratorScreen = new CharacterGeneratorScreen(this, stateManager);
 LoadGameScreen = new LoadGameScreen(this, stateManager);
 SkillScreen = new GameScreens.SkillScreen(this, stateManager);

 stateManager.ChangeState(TitleScreen);
}

Nothing really new there. There is just a public field that can be accessed using the GameRef field in
the BaseGameState. In the constructor I just create a new instance of SkillScreen.

The last thing is that you want to jump from the CharacterGeneratorScreen to the SkillScreen rather
than to the GamePlayScreen. I did that in the linkLabel1_Selected method. Change that method to
the following.

void linkLabel1_Selected(object sender, EventArgs e)
{
 InputHandler.Flush();

 CreatePlayer();
 CreateWorld();

 GameRef.SkillScreen.SkillPoints = 25;
 StateManager.ChangeState(GameRef.SkillScreen);
}

What I did here was call the CreatePlayer and CreateWorld methods to create a Player and World
object. If you recall from the beginning I give players 25 points to spend on skills when they are first
created. I assign the SkillPoints property of the SkillScreen class to 25. I then call the ChangeState
method of the GameStateManager passing in the SkillScreen.

I'm going to end this tutorial here. The plan was to add in more to dealing with skills in the game. I
encourage you to visit the news page of my site, XNA Game Programming Adventures , for the latest
news on my tutorials.

Good luck in your game programming adventures!

Jamie McMahon

http://xnagpa.net/news.html
http://xnagpa.net/news.html

