
XNA 4.0 RPG Tutorials

Part 19

Skills Continued

I'm writing these tutorials for the new XNA 4.0 framework. The tutorials will make more sense if they
are read in order. You can find the list of tutorials on the XNA 4.0 RPG tutorials page of my web site. I
will be making my version of the project available for download at the end of each tutorial. It will be
included on the page that links to the tutorials.

In tutorial 15 I added in some place holder classes for skills, talents, and spells. In this tutorial I'm
going to flesh out skills more. As I mentioned in tutorial 15 skills can be learned by any intelligent
creature. The way I'm handling skills is that skills have a rank associated with them between 1 and 100.
A rank of 0 means that the character has no knowledge of that skill. A rank of 100 means the character
is master at that skill. When a character is first created they get 25 points to spend on skills. Every time
a character levels up they get 10 additional points to spend on skills. There is also a difficulty involved
when a character tries to apply a skill. It can be very easy to use a skill or hard even for a master. To
successfully use a skill a random number between 1 and 100 is generated. If the character's rank in the
skill plus the difficulty plus any modifiers is greater than or equal to the random number the character
is successful in using the skill. Skills will have modifiers based on a primary attribute, like strength,
and the character's class. A thief will have a better understanding of poisons than a fighter.

So, what exactly are the skills I'm planning on implementing? I'm going to implement some crafting
skills. Crafting skills require a recipe to use and the reagents required by the recipe. It is the recipes that
have a difficulty associated with them. Making a simple health potion wouldn't be too difficult but
creating a deadly poison would be quite challenging. I'm going to be adding a bartering skill as well
that will help the character deal with trading. Be careful using it though. If you upset the merchant you
could get tossed out of their shop! I will add a few others as well.

The first step will be to flesh out the Skill and SkillData classes. Like the other Data classes SkillData
will define a basic skill, with out any modifiers. The Skill class will be created and be specific to a
character. Change the SkillData class to the following.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.SkillClasses
{
 public class SkillData
 {
 #region Field Region

 public string Name;
 public string PrimaryAttribute;
 public Dictionary<string, int> ClassModifiers;

 #endregion

http://xnagpa.net/xnarpg4tutorials.html

 #region Constructor Region

 public SkillData()
 {
 ClassModifiers = new Dictionary<string, int>();
 }

 #endregion

 #region Virtual Method Region

 public override string ToString()
 {
 string toString = Name + ", ";
 toString += PrimaryAttribute;

 foreach (string s in ClassModifiers.Keys)
 toString += ", " + s + "+" + ClassModifiers[s].ToString();

 return toString;
 }

 #endregion
 }
}

There are three fields in the class. There is Name for the name of the skill. PrimaryAttribute is the
primary attribute that affects the skill. ClassModifiers is a Dictionary<string, int>. The string is the
name of the class and the int is the amount of the modifier. The IntermediateSerializer class does
allow for Dictionary fields to be serialized and deserialzed so there is no worries about that. I included
an override of the ToString method, for use in the editor.

Speaking of the editor now would be a good time to add skills to the editor. For the next little bit you
will want the editor to be the start up project. Right click the RpgEditor in the solution explorer and
select Set As StartUp Project. You are going to want to add two forms to the RpgEditor. One to hold
all of the skills in the game and one creating and editing skills. Right click the RpgEditor in the
solution explorer, select Add and then Windows Form. Name the new form FormSkill.

First, set the Size property of FormSkill to be the Size property of FormDetails. Set the Text property
to be Skills and the MinimizeBox property to False. Right click FormSkill in the solution explorer
and select View Code. Modify the code of FormSkill to inherit from FormDetails.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace RpgEditor
{
 public partial class FormSkill : FormDetails
 {
 public FormSkill()
 {
 InitializeComponent();
 }
 }
}

Before I get to the form for creating and editing a skill you will want to update FormDetails to include
a SkillDataManager field. You will also want to add methods to read and write skills. Right click
FormDetails in the solution explorer and select View Code. First, add this field to the Field Region
and property to the Property Region. You will also want a using statement for the SkillClasses name
space in the RpgLibrary.

using RpgLibrary.SkillClasses;

protected static SkillDataManager skillManager;

public static SkillDataManager SkillManager
{
 get { return skillManager; }
}

To the Method Region you will want to add these methods to write and read the skill data.

public static void WriteSkillData()
{
 foreach (string s in SkillManager.SkillData.Keys)
 {
 XnaSerializer.Serialize<SkillData>(
 FormMain.SkillPath + @"\" + s + ".xml",
 SkillManager.SkillData[s]);
 }
}

public static void ReadSkillData()
{
 skillManager = new SkillDataManager();

 string[] fileNames = Directory.GetFiles(FormMain.SkillPath, "*.xml");

 foreach (string s in fileNames)
 {
 SkillData chestData = XnaSerializer.Deserialize<SkillData>(s);
 skillManager.SkillData.Add(chestData.Name, chestData);
 }
}

Visual Studio is going to give you two errors, that FormMain.SkillPath does not exist. Let's fix that in
FormMain. Right click FormMain in the solution explorer and select View Code. First, you are going
to want a field for FormSkill and a field for the path to write skills. You will also want to add a
property to expose the path for skills. Change the Field and Property regions to the following.

#region Field Region

RolePlayingGame rolePlayingGame;
FormClasses frmClasses;
FormArmor frmArmor;
FormShield frmShield;
FormWeapon frmWeapon;
FormKey frmKey;
FormChest frmChest;
FormSkill frmSkill;

static string gamePath = "";
static string classPath = "";
static string itemPath = "";
static string chestPath = "";
static string keyPath = "";
static string skillPath = "";

#endregion

#region Property Region

public static string GamePath
{
 get { return gamePath; }
}

public static string ClassPath
{
 get { return classPath; }
}

public static string ItemPath
{
 get { return itemPath; }
}

public static string ChestPath
{
 get { return chestPath; }
}

public static string KeyPath
{
 get { return keyPath; }
}

public static string SkillPath
{
 get { return skillPath; }
}

#endregion

The next step is going to be designing the form for creating and editing the individual skills. Right click
RpgEditor, select Add and then Windows Form. Name this new form FormSkillDetails. My form in
the solution explorer appears next.

First, you will want to make the form bigger to house all of the controls. You can also set the
ControlBox property to False, the StartPosition to CenterParent, and the Text property to Skill.
First, drag a Label onto the form and set its Text property to Skill Name:. Drag a Text Box beside the
Label and set its Name property to tbName. Drag a Group Box onto the form next and change the
size. You can set its Text property to Primary Attribute. Onto the Group Box you will want to drag
on six Radio Buttons. For the first one set the Name property to rbStrength and the Text property to
Strength. Also, set the Checked property of the Radio Button to True. For the other Radio Buttons
set their Name and Text properties to the following, in order: rbDexterity and Dexterity, rbCunning
and Cunning, rbWillpower and Willpower, rbMagic and Magic, and rbConstitution and
Constitution. I then dragged another Group Box onto the form and made it larger. I also set the Text
property of the Group Box to Class Modifiers. I dragged a List Box onto the Group Box and set its
Name property to lbModifiers. Under the List Box, but still on the Group Box, I dragged three
Buttons. I set their Name and Text properties to the following, again in order: btnAdd and Add,
btnRemove and Remove, and btnEdit and Edit. Under the Group Boxes I dragged on two more
Buttons. The first one I set Name to btnOK and Text to OK. The second I set Name to btnCancel
and Text to Cancel.

I'm going to add in some of the logic to the form now. Right click FormSkillDetails in the solution
explorer and select View Code. The code for FormSkillDetails follows next.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using RpgLibrary.SkillClasses;

namespace RpgEditor
{
 public partial class FormSkillDetails : Form
 {
 #region Field Region

 SkillData skill;

 #endregion

 #region Property Region

 public SkillData Skill
 {
 get { return skill; }
 set { skill = value; }
 }

 #endregion

 #region Constructor Region

 public FormSkillDetails()
 {
 InitializeComponent();

 this.Load += new EventHandler(FormSkillDetails_Load);
 this.FormClosing += new FormClosingEventHandler(FormSkillDetails_FormClosing);

 btnOK.Click += new EventHandler(btnOK_Click);
 btnCancel.Click += new EventHandler(btnCancel_Click);

 }

 #endregion

 #region Form Event Handler Region

 void FormSkillDetails_Load(object sender, EventArgs e)
 {
 if (Skill != null)
 {
 tbName.Text = Skill.Name;
 switch (Skill.PrimaryAttribute.ToLower())
 {
 case "strength":
 rbStrength.Checked = true;
 break;
 case "dexterity":
 rbDexterity.Checked = true;
 break;
 case "cunning":
 rbCunning.Checked = true;
 break;
 case "willpower":
 rbWillpower.Checked = true;
 break;
 case "magic":
 rbMagic.Checked = true;
 break;
 case "constitution":
 rbConstitution.Checked = true;
 break;
 }

 foreach (string s in Skill.ClassModifiers.Keys)
 {
 string data = s + ", " + Skill.ClassModifiers[s].ToString();
 lbModifiers.Items.Add(data);
 }
 }
 }

 void FormSkillDetails_FormClosing(object sender, FormClosingEventArgs e)
 {
 if (e.CloseReason == CloseReason.UserClosing)
 {
 e.Cancel = true;
 }
 }

 #endregion

 #region Button Event Handler Region

 void btnOK_Click(object sender, EventArgs e)
 {
 if (string.IsNullOrEmpty(tbName.Text))
 {
 MessageBox.Show("You must provide a name for the skill.");
 return;
 }

 SkillData newSkill = new SkillData();

 newSkill.Name = tbName.Text;

 if (rbStrength.Checked)
 newSkill.PrimaryAttribute = "Strength";
 else if (rbDexterity.Checked)
 newSkill.PrimaryAttribute = "Dexterity";
 else if (rbCunning.Checked)

 newSkill.PrimaryAttribute = "Cunning";
 else if (rbWillpower.Checked)
 newSkill.PrimaryAttribute = "Willpower";
 else if (rbMagic.Checked)
 newSkill.PrimaryAttribute = "Magic";
 else if (rbConstitution.Checked)
 newSkill.PrimaryAttribute = "Constitution";

 skill = newSkill;
 this.FormClosing -= FormSkillDetails_FormClosing;
 this.Close();
 }

 void btnCancel_Click(object sender, EventArgs e)
 {
 skill = null;
 this.FormClosing -= FormSkillDetails_FormClosing;
 this.Close();
 }

 #endregion
 }
}

There is a lot that you've seen here before. There is a using statement to bring the SkillClasses classes
into scope. There is a field of type SkillData and a property to expose the field. The constructor wires
event handlers for the Load and FormClosing events of the form. It also wires handlers for btnOK
and btnCancel. I didn't wire the handlers for the other buttons. That I will do in a future tutorial. The
Load event handler checks to see if the Skill property is not null. If it isn't I set the Text property of
tbName to the Name field. There is a switch on the the PrimaryAttribute field of the skill converted
to a lower case string. The cases check for each of the primary attributes. If that value is found I set the
Checked property of the appropriate Radio Button to True. In a foreach loop I loop over all of the
keys in the ClassModifiers dictionary. I create a string consisting of the class name, a comma, and the
value of the modifier as a string. I then add the string to the Items of lbModifier. There is nothing you
haven't seen in the FormClosing event handler. The Click handler of btnOK does a little validation on
the form. If the Text property of tbName is null or empty I show a message box stating it must have a
value and break out of the method. I create a new instance of SkillData and set the Name field to be
the Text property of tbName. For determining what the primary attribute should be there is a series of
if-else-it statements that check the Checked property of the radio buttons. I set the PrimaryAttribute
field base on which radio button was checked. I then set the skill field and then unsubscribe from the
FormClosing event. Finally the form closes. I believe the Click event handler for btnCancel doesn't
need to be explained either.

I'm going to add in the code for dealing with FormSkill now. Right click FormSkill in the solution
explorer and select View Code. The code for that form follows next.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.IO;

using RpgLibrary.SkillClasses;

namespace RpgEditor
{

 public partial class FormSkill : FormDetails
 {

 #region Constructor Region

 public FormSkill()
 {
 InitializeComponent();

 btnAdd.Click += new EventHandler(btnAdd_Click);
 btnEdit.Click += new EventHandler(btnEdit_Click);
 btnDelete.Click += new EventHandler(btnDelete_Click);
 }

 #endregion

 #region Button Event Handler Region

 void btnAdd_Click(object sender, EventArgs e)
 {
 using (FormSkillDetails frmSkillDetails = new FormSkillDetails())
 {
 frmSkillDetails.ShowDialog();

 if (frmSkillDetails.Skill != null)
 {
 AddSkill(frmSkillDetails.Skill);
 }
 }
 }

 void btnEdit_Click(object sender, EventArgs e)
 {
 if (lbDetails.SelectedItem != null)
 {
 string detail = lbDetails.SelectedItem.ToString();
 string[] parts = detail.Split(',');
 string entity = parts[0].Trim();

 SkillData data = skillManager.SkillData[entity];
 SkillData newData = null;

 using (FormSkillDetails frmSkillData = new FormSkillDetails())
 {
 frmSkillData.Skill = data;
 frmSkillData.ShowDialog();

 if (frmSkillData.Skill == null)
 return;

 if (frmSkillData.Skill.Name == entity)
 {
 skillManager.SkillData[entity] = frmSkillData.Skill;
 FillListBox();
 return;
 }

 newData = frmSkillData.Skill;
 }

 DialogResult result = MessageBox.Show(
 "Name has changed. Do you want to add a new entry?",
 "New Entry",
 MessageBoxButtons.YesNo);

 if (result == DialogResult.No)
 return;

 if (skillManager.SkillData.ContainsKey(newData.Name))

 {
 MessageBox.Show("Entry already exists. Use Edit to modify the entry.");
 return;
 }

 lbDetails.Items.Add(newData);
 skillManager.SkillData.Add(newData.Name, newData);
 }
 }

 void btnDelete_Click(object sender, EventArgs e)
 {
 if (lbDetails.SelectedItem != null)
 {
 string detail = (string)lbDetails.SelectedItem;
 string[] parts = detail.Split(',');
 string entity = parts[0].Trim();

 DialogResult result = MessageBox.Show(
 "Are you sure you want to delete " + entity + "?",
 "Delete",
 MessageBoxButtons.YesNo);

 if (result == DialogResult.Yes)
 {
 lbDetails.Items.RemoveAt(lbDetails.SelectedIndex);
 skillManager.SkillData.Remove(entity);

 if (File.Exists(FormMain.SkillPath + @"\" + entity + ".xml"))
 File.Delete(FormMain.SkillPath + @"\" + entity + ".xml");
 }
 }
 }

 #endregion

 #region Method Region

 public void FillListBox()
 {
 lbDetails.Items.Clear();

 foreach (string s in FormDetails.SkillManager.SkillData.Keys)
 lbDetails.Items.Add(FormDetails.SkillManager.SkillData[s]);
 }

 private void AddSkill(SkillData skillData)
 {
 if (FormDetails.SkillManager.SkillData.ContainsKey(skillData.Name))
 {
 DialogResult result = MessageBox.Show(
 skillData.Name + " already exists. Overwrite it?",
 "Existing armor",
 MessageBoxButtons.YesNo);

 if (result == DialogResult.No)
 return;

 skillManager.SkillData[skillData.Name] = skillData;
 FillListBox();
 return;
 }

 skillManager.SkillData.Add(skillData.Name, skillData);
 lbDetails.Items.Add(skillData);
 }

 #endregion
 }
}

You may be getting tired of seeing this code over and over again. It is a lot like the code for the other
forms that house all of a specific type of data. The main difference is that instead of working with items
this form works with skills. The basics were to add using statements to bring some classes into scope
for the form. I then wired the event handlers for the buttons.

In the Click event of the Add button I create a new FormSkillDetails in a using statement so it will be
disposed of when I'm done with it. I then display the form using ShowDialog so the user must finish
with the form before working on the editor again. If the Skill property of the form is not null I call the
AddSkill method.

The Click event of the Edit button checks to see if the SelectedItem property of lbDetails is not null.
It then splits the item into the different parts to get the Name of the skill. I then get the skill from the
SkillDataManager. I also have another local variable of SkillData that is set to null. I create a new
form of type FormSkillDetails in a using statement so it will be disposed of when I close the form. I
then set the Skill property of form to be the skill retrieved from the SkillDataManager. It is is null the
user canceled the edit and I break out of the method. If the Name of the skill on the form is the same as
the name of the skill from the list box I update the skill in the skill data manager and call the
FillListBox method to update it and return out of the method. Otherwise I set the newData local
variable to be the Skill property of the form. I display a message box stating that the name of the skill
has changed and if the user wants to add a new skill with that name. If the response is no I break out of
the method. If there is already a skill with the new name I display a message box and break out of the
method. Otherwise I add the new skill to lbDetails and skillManager.

The Click event of the Delete button checks to see if the SelectedItem property of lbDetails is not null
like before. I get the name of the selected item as before and display a message box asking if the entry
should be deleted. If the answer was yes I remove the entry from the list box and from the skill data
manager class. I also check to see if a file exists in the directory containing skills. If it does exist I
delete it. I will point out I missed something in tutorial 18. I neglected to update the code for deleting
items in FormKey and FormChest. I will update that code shortly.

The FillListBox method works like previous versions of the FillListBox method. It just works with
SkillData rather than other data classes. Same with the AddSkill method. It just works with skills
rather than other data classes.

For FormKey you want to check the directory for keys, not a directory inside the directory for items.
Change the btnDelete_Click method of FormKey to the following.

void btnDelete_Click(object sender, EventArgs e)
{
 if (lbDetails.SelectedItem != null)
 {
 string detail = (string)lbDetails.SelectedItem;
 string[] parts = detail.Split(',');
 string entity = parts[0].Trim();

 DialogResult result = MessageBox.Show(
 "Are you sure you want to delete " + entity + "?",
 "Delete",
 MessageBoxButtons.YesNo);

 if (result == DialogResult.Yes)
 {
 lbDetails.Items.RemoveAt(lbDetails.SelectedIndex);
 itemManager.KeyData.Remove(entity);

 if (File.Exists(FormMain.KeyPath + @"\" + entity + ".xml"))
 File.Delete(FormMain.KeyPath + @"\" + entity + ".xml");
 }
 }
}

The same thing is true for FormChest. Rather than keys you want to work with chests. Change the
btnDelete_Click method in FormChest to the following.

void btnDelete_Click(object sender, EventArgs e)
{
 if (lbDetails.SelectedItem != null)
 {
 string detail = (string)lbDetails.SelectedItem;
 string[] parts = detail.Split(',');
 string entity = parts[0].Trim();

 DialogResult result = MessageBox.Show(
 "Are you sure you want to delete " + entity + "?",
 "Delete",
 MessageBoxButtons.YesNo);

 if (result == DialogResult.Yes)
 {
 lbDetails.Items.RemoveAt(lbDetails.SelectedIndex);
 itemManager.ChestData.Remove(entity);

 if (File.Exists(FormMain.ChestPath + @"\" + entity + ".xml"))
 File.Delete(FormMain.ChestPath + @"\" + entity + ".xml");
 }
 }
}

The next thing to do is to update the main form to work with skills. You will want to add a new menu
item for skills. Right click FormMain and select View Designer to bring up the design view. Like you
did in the last tutorial you want to add a new menu item. Beside the Chests item add a new item
&Skills. Set the Enabled property to be False as well. Your menu bar should now look like this.

You can close the design view and go back to the code view. If you closed the code view before open it
again by right clicking FormMain and selecting View Code. You will want to add in an event handler
for the new menu item. Change the constructor of FormMain to the following. Add the following
method just below the other handlers for menu item clicks.

public FormMain()
{
 InitializeComponent();

 this.FormClosing += new FormClosingEventHandler(FormMain_FormClosing);

 newGameToolStripMenuItem.Click += new EventHandler(newGameToolStripMenuItem_Click);
 openGameToolStripMenuItem.Click += new EventHandler(openGameToolStripMenuItem_Click);
 saveGameToolStripMenuItem.Click += new EventHandler(saveGameToolStripMenuItem_Click);
 exitToolStripMenuItem.Click += new EventHandler(exitToolStripMenuItem_Click);

 classesToolStripMenuItem.Click += new EventHandler(classesToolStripMenuItem_Click);
 armorToolStripMenuItem.Click += new EventHandler(armorToolStripMenuItem_Click);
 shieldToolStripMenuItem.Click += new EventHandler(shieldToolStripMenuItem_Click);
 weaponToolStripMenuItem.Click += new EventHandler(weaponToolStripMenuItem_Click);

 keysToolStripMenuItem.Click += new EventHandler(keysToolStripMenuItem_Click);
 chestsToolStripMenuItem.Click += new EventHandler(chestsToolStripMenuItem_Click);

 skillsToolStripMenuItem.Click += new EventHandler(skillsToolStripMenuItem_Click);
}

void skillsToolStripMenuItem_Click(object sender, EventArgs e)
{
 if (frmSkill == null)
 {
 frmSkill = new FormSkill();
 frmSkill.MdiParent = this;
 }

 frmSkill.Show();
 frmSkill.BringToFront();
}

The handler works like the other handlers. Check to see if the form is null. If it is null create one and
set the MdiParent to be this. Then you call the Show method to show the form and the BringToFront
method to make it the top form.

You are going to want to update the code for creating a new game, saving a game, and opening a game.
I will start with creating a new game. Change the code for the click event handler of the new game
menu item to the following.

void newGameToolStripMenuItem_Click(object sender, EventArgs e)
{
 using (FormNewGame frmNewGame = new FormNewGame())
 {
 DialogResult result = frmNewGame.ShowDialog();

 if (result == DialogResult.OK && frmNewGame.RolePlayingGame != null)
 {
 FolderBrowserDialog folderDialog = new FolderBrowserDialog();

 folderDialog.Description = "Select folder to create game in.";
 folderDialog.SelectedPath = Application.StartupPath;

 DialogResult folderResult = folderDialog.ShowDialog();

 if (folderResult == DialogResult.OK)
 {
 try
 {

 gamePath = Path.Combine(folderDialog.SelectedPath, "Game");
 classPath = Path.Combine(gamePath, "Classes");
 itemPath = Path.Combine(gamePath, "Items");
 keyPath = Path.Combine(gamePath, "Keys");
 chestPath = Path.Combine(gamePath, "Chests");
 skillPath = Path.Combine(gamePath, "Skills");

 if (Directory.Exists(gamePath))
 throw new Exception("Selected directory already exists.");

 Directory.CreateDirectory(gamePath);
 Directory.CreateDirectory(classPath);
 Directory.CreateDirectory(itemPath + @"\Armor");
 Directory.CreateDirectory(itemPath + @"\Shield");
 Directory.CreateDirectory(itemPath + @"\Weapon");
 Directory.CreateDirectory(keyPath);
 Directory.CreateDirectory(chestPath);
 Directory.CreateDirectory(skillPath);

 rolePlayingGame = frmNewGame.RolePlayingGame;

 XnaSerializer.Serialize<RolePlayingGame>(gamePath + @"\Game.xml",
rolePlayingGame);
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 return;
 }

 classesToolStripMenuItem.Enabled = true;
 itemsToolStripMenuItem.Enabled = true;
 keysToolStripMenuItem.Enabled = true;
 chestsToolStripMenuItem.Enabled = true;
 skillsToolStripMenuItem.Enabled = true;
 }
 }
 }
}

The changes were that I make a new path like the other paths. I create a directory like the others as
well. I also set the Enabled property of the menu item to true as well.

For saving a game you will want to write out the SkillData in the SkillDataManager. All you need to
do is to call the static method WriteSkillData of FormDetails. Change the click event handler for the
save menu item to the following.

void saveGameToolStripMenuItem_Click(object sender, EventArgs e)
{
 if (rolePlayingGame != null)
 {
 try
 {
 XnaSerializer.Serialize<RolePlayingGame>(gamePath + @"\Game.xml", rolePlayingGame);
 FormDetails.WriteEntityData();
 FormDetails.WriteItemData();
 FormDetails.WriteChestData();
 FormDetails.WriteKeyData();
 FormDetails.WriteSkillData();
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString(), "Error saving game.");
 }
 }
}

There are two parts to opening games. You will want to change the OpenGame and PrepareForms
methods. You can change those methods to the following.

private void OpenGame(string path)
{
 gamePath = Path.Combine(path, "Game");
 classPath = Path.Combine(gamePath, "Classes");
 itemPath = Path.Combine(gamePath, "Items");
 keyPath = Path.Combine(gamePath, "Keys");
 chestPath = Path.Combine(gamePath, "Chests");
 skillPath = Path.Combine(gamePath, "Skills");

 if (!Directory.Exists(keyPath))
 {
 Directory.CreateDirectory(keyPath);
 }

 if (!Directory.Exists(chestPath))
 {

 Directory.CreateDirectory(chestPath);
 }

 if (!Directory.Exists(skillPath))
 {
 Directory.CreateDirectory(skillPath);
 }

 rolePlayingGame = XnaSerializer.Deserialize<RolePlayingGame>(
 gamePath + @"\Game.xml");

 FormDetails.ReadEntityData();
 FormDetails.ReadItemData();
 FormDetails.ReadKeyData();
 FormDetails.ReadChestData();
 FormDetails.ReadSkillData();

 PrepareForms();
}

private void PrepareForms()
{
 if (frmClasses == null)
 {
 frmClasses = new FormClasses();
 frmClasses.MdiParent = this;
 }

 frmClasses.FillListBox();

 if (frmArmor == null)
 {
 frmArmor = new FormArmor();
 frmArmor.MdiParent = this;
 }

 frmArmor.FillListBox();

 if (frmShield == null)
 {
 frmShield = new FormShield();
 frmShield.MdiParent = this;
 }

 frmShield.FillListBox();

 if (frmWeapon == null)
 {
 frmWeapon = new FormWeapon();
 frmWeapon.MdiParent = this;
 }

 frmWeapon.FillListBox();

 if (frmKey == null)
 {
 frmKey = new FormKey();
 frmKey.MdiParent = this;
 }

 frmKey.FillListBox();

 if (frmChest == null)
 {
 frmChest = new FormChest();
 frmChest.MdiParent = this;
 }

 frmChest.FillListBox();

 if (frmSkill == null)
 {
 frmSkill = new FormSkill();
 frmSkill.MdiParent = this;
 }

 frmSkill.FillListBox();

 classesToolStripMenuItem.Enabled = true;
 itemsToolStripMenuItem.Enabled = true;
 keysToolStripMenuItem.Enabled = true;
 chestsToolStripMenuItem.Enabled = true;
 skillsToolStripMenuItem.Enabled = true;
}

So, what are the changes to OpenGame. The first is you want to create a path for skills. Like for chests
and keys and since skills are new I check to see if a directory for skills exists. If it doesn't I create a
directory for them. I then call the ReadSkillData method of FormDetails to read in the skills.

The change to PrepareForms is I check to see if frmSkills is null. If it is I create a new form and set
the MdiParent to be this the current form. I then call the FillListBox method of FormSkill to fill it
with items. I set the Enabled property of the menu item to True as well.

So, build and run the editor. Choose to open a game from the Game menu and navigate to the
EyesOfTheDragonContent folder where you added the Game to last time. Bring up the Skills form
and add the following skills.

Skill Name Primary Attribute
Bartering Cunning
Herbalism Magic
Poison Making Cunning
Trap Making Dexterity

The first skill, Bartering, is influenced by a character's Cunning. If you recall Cunning measures a
character's ability to read a situation, pick up on subtleties and reason. Bartering can improve
interaction with merchants. They will give you a lower price if you successfully barter with them when
you are buying something for example. If you fail drastically they might throw you out of their store!
Herbalism is combining ingredients to make magical potions and is influenced by a character's Magic
attribute. The higher the character's magic the better quality the potion will be. Poison Making allows
the player to create poisons. They are more mundane than potions so it required great cunning when
crafting a poison. Trap Making allows the character to craft traps. It takes a lot of dexterity to keep a
trap from going off while you are crafting it.

I'm going to end this tutorial here. The plan was to add in more to dealing with skills in the game. I
encourage you to visit the news page of my site, XNA Game Programming Adventures , for the latest
news on my tutorials.

Good luck in your game programming adventures!

Jamie McMahon

http://xnagpa.net/news.html
http://xnagpa.net/news.html

