
XNA 4.0 RPG Tutorials

Part 18A

Finding Loot Part 2

I'm writing these tutorials for the new XNA 4.0 framework. The tutorials will make more sense if they
are read in order. You can find the list of tutorials on the XNA 4.0 RPG tutorials page of my web site. I
will be making my version of the project available for download at the end of each tutorial. It will be
included on the page that links to the tutorials.

In the last tutorial I worked on adding chests for the player to interact with to find loot. In this tutorial I
going to continue on with that. The first thing I want to do is to add in two classes for keys for
unlocking locks. Like you can find on chests, doors, and other objects. Keys are just another type of
item so they belong in the ItemClasses folder of the RpgLibrary. Like other types of items you will
want a data class for use in editors and reading in data and a class for the keys themselves that inherits
from the BaseItem class. Right click the ItemClasses folder, select Add and then Class. Name this
new class KeyData. Repeat the process and name the new class Key. The code for both of those
classes follows next.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.ItemClasses
{
 public class KeyData
 {
 #region Field Region

 public string Name;
 public string Type;

 #endregion

 #region Constructor Region

 public KeyData()
 {
 }

 #endregion

 #region Method Region

 public override string ToString()
 {
 string toString = Name + ", ";
 toString += Type;

 return toString;
 }

 #endregion
 }
}

http://xnagpa.net/xnarpg4tutorials.html

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.ItemClasses
{
 public class Key : BaseItem
 {
 #region Field region
 #endregion

 #region Property Region
 #endregion

 #region Constructor Region

 public Key(string name, string type)
 : base(name, type, 0, 0, null)
 {
 }

 #endregion

 #region Virtual Method Region

 public override object Clone()
 {
 Key key = new Key(this.Name, this.Type);

 return key;
 }

 #endregion
 }
}

Not much you haven't seen before. The KeyData class has two public fields. The Name of the key and
the Type of the key. I debated about including other fields like a price and a weight. I didn't think they
were necessary. The Type field can be of great use. If you've played the Fable games they have special
silver keys that can be used to open special chests. Each chest requires a certain number of these keys.
Using the Type field you can easily add this functionality into your games. It will require a minor
tweak that I will make later. The ToString method of the KeyData class just combines the name of the
key and the type. The Key class is also simplistic. It inherits from the BaseItem class. It takes just two
string parameters for the name and the type. In the call to the base constructor I pass in the parameters
passed to the Key class and 0 for the price and weight and null for allowableClasses. The Clone
method just creates a new key and returns it.

The first tweak for handling multiple keys of the same type is to add in two fields to the ChestData
class. They are KeyType which is a string and KeysRequired which is an integer. I'm going to also
associate a DifficultyLevel with a chest from the SkillClasses folder for the lock on the chest. In the
ToString method you add in these three new fields, calling their ToString methods. I also removed the
TextureName field from the class. I will be handling associating an image with a chest when I get to
the level editor as it applies more to levels. Change the ChestData method to the following.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using RpgLibrary.SkillClasses;

namespace RpgLibrary.ItemClasses
{
 public class ChestData
 {
 public string Name;
 public DifficultyLevel DifficultyLevel;
 public bool IsLocked;
 public bool IsTrapped;
 public string TrapName;
 public string KeyName;
 public string KeyType;
 public int KeysRequired;
 public int MinGold;
 public int MaxGold;
 public Dictionary<string, string> ItemCollection;

 public ChestData()
 {
 ItemCollection = new Dictionary<string, string>();
 }

 public override string ToString()
 {
 string toString = Name + ", ";
 toString += DifficultyLevel.ToString() + ", ";
 toString += IsLocked.ToString() + ", ";
 toString += IsTrapped.ToString() + ", ";
 toString += TrapName + ", ";
 toString += KeyName + ", ";
 toString += KeyType + ", ";
 toString += KeysRequired.ToString() + ", ";
 toString += MinGold.ToString() + ", ";
 toString += MaxGold.ToString();

 foreach (KeyValuePair<string, string> pair in ItemCollection)
 {
 toString += ", " + pair.Key + "+" + pair.Value;
 }

 return toString;
 }
 }
}

You also need update the Chest class, specifically the Clone method. Change the Clone of the Chest
class to the following.

public override object Clone()
{
 ChestData data = new ChestData();
 data.Name = chestData.Name;
 data.DifficultyLevel = chestData.DifficultyLevel;
 data.IsLocked = chestData.IsLocked;
 data.IsTrapped = chestData.IsTrapped;
 data.TrapName = chestData.TrapName;
 data.KeyName = chestData.KeyName;
 data.KeyType = chestData.KeyType;
 data.KeysRequired = chestData.KeysRequired;
 data.MinGold = chestData.MinGold;
 data.MaxGold = chestData.MaxGold;

 foreach (KeyValuePair<string, string> pair in chestData.ItemCollection)
 data.ItemCollection.Add(pair.Key, pair.Value);

 Chest chest = new Chest(data);
 return chest;
}

I will handle opening chests with keys in a future tutorial. I just wanted to add in the functionality to
this tutorial so it will be available later when it is needed. I'm going to work on the editor a bit on
creating keys and chests. To do that I'm first going to update the ItemDataManager class to hold
dictionaries of <string, ItemDataType> where ItemDataType is the data class associated with the
item. Change the ItemDataManager to the following.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.ItemClasses
{
 public class ItemDataManager
 {
 #region Field Region

 readonly Dictionary<string, ArmorData> armorData = new Dictionary<string, ArmorData>();
 readonly Dictionary<string, ShieldData> shieldData = new Dictionary<string,
ShieldData>();
 readonly Dictionary<string, WeaponData> weaponData = new Dictionary<string,
WeaponData>();
 readonly Dictionary<string, ReagentData> reagentData = new Dictionary<string,
ReagentData>();
 readonly Dictionary<string, KeyData> keyData = new Dictionary<string, KeyData>();
 readonly Dictionary<string, ChestData> chestData = new Dictionary<string, ChestData>();

 #endregion

 #region Property Region

 public Dictionary<string, ArmorData> ArmorData
 {
 get { return armorData; }
 }

 public Dictionary<string, ShieldData> ShieldData
 {
 get { return shieldData; }
 }

 public Dictionary<string, WeaponData> WeaponData
 {
 get { return weaponData; }
 }

 public Dictionary<string, ReagentData> ReagentData
 {
 get { return reagentData; }
 }

 public Dictionary<string, KeyData> KeyData
 {
 get { return keyData; }
 }

 public Dictionary<string, ChestData> ChestData
 {
 get { return chestData; }
 }

 #endregion

 #region Constructor Region
 #endregion

 #region Method Region

 #endregion
 }
}

Nothing there that you haven't seen before. Build your project to make sure it builds correctly. Right
click the RpgEditor project in the solution explorer, select Add and then Windows Form. Name this
new form FormKey. Set the Size property of the form to be the Size property of your FormDetails.
Set the MinimizeBox property to false and the Text property to Keys. You will now want to have
FormKey inherit from FormDetails instead of Form. Right click FormKey in the solution explorer
and select View Code. Change the code to the following.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace RpgEditor
{
 public partial class FormKey : FormDetails
 {
 public FormKey()
 {
 InitializeComponent();
 }
 }
}

I'm going to add another form before I get to the code for FormKey. Right click RpgEditor in the
solution explorer, select Add and then Windows Form. Name this new form FormKeyDetails. I'm
going to add a couple controls and set some properties for FormKeyDetails. Your finished form in the
designer should resemble the one below.

Start by changing the size of the form so it is a bigger than what you need. Drag a Label onto the form
near the top then a Text Box and position it to the right of the Label. Drag another Label onto the form
positioning it below the first. Drag a second Text Box onto the form and position it below the first Text
Box. Now drag two Buttons onto the form. Position the first to the left and the second to the right. Set
the Text property of the form to Key Details, the StartPosition to CenterParent, the ControlBox to
False, and the FormBorderStyle to FixedDialog. Set the Name property of the first Text Box to
tbName and the second to tbType. Set the Text property of the first Label to Name: and the second to
Type:. For the buttons the one of the left has Name and Text properties of btnOK and OK. The second
btnCancel and Cancel for the Name and Text properties.

Now lets add the logic to FormKeyDetails. Right click FormKeyDetails in the solution explorer and

select View Code. Change the code to the following.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

using RpgLibrary.ItemClasses;

namespace RpgEditor
{
 public partial class FormKeyDetails : Form
 {
 #region Field Region

 KeyData key;

 #endregion

 #region Property Region

 public KeyData Key
 {
 get { return key; }
 set { key = value; }
 }

 #endregion

 #region Constructor Region

 public FormKeyDetails()
 {
 InitializeComponent();

 this.Load += new EventHandler(FormKeyDetails_Load);
 this.FormClosing += new FormClosingEventHandler(FormKeyDetails_FormClosing);

 btnOK.Click += new EventHandler(btnOK_Click);
 btnCancel.Click += new EventHandler(btnCancel_Click);
 }

 #endregion

 #region Event Handler Region

 void FormKeyDetails_Load(object sender, EventArgs e)
 {
 if (key != null)
 {
 tbName.Text = key.Name;
 tbType.Text = key.Type;
 }
 }

 void FormKeyDetails_FormClosing(object sender, FormClosingEventArgs e)
 {
 if (e.CloseReason == CloseReason.UserClosing)
 {
 e.Cancel = true;
 }
 }

 void btnOK_Click(object sender, EventArgs e)
 {

 if (string.IsNullOrEmpty(tbName.Text))
 {
 MessageBox.Show("You must enter a name for the item.");
 return;
 }

 key = new KeyData();
 key.Name = tbName.Text;
 key.Type = tbType.Text;

 this.FormClosing -= FormKeyDetails_FormClosing;
 this.Close();
 }

 void btnCancel_Click(object sender, EventArgs e)
 {
 key = null;
 this.FormClosing -= FormKeyDetails_FormClosing;
 this.Close();
 }

 #endregion
 }
}

This should look familiar to you. It follows the other detail forms that I created. There is a using
statement to bring the ItemClasses name space from the RpgLibrary into scope. There is a field of
type KeyData for the key that is being created or edited. If the key is being edited you can use the
property to set the fields of the key. The constructor wires handlers for the Load and FormClosing
events of the form. It also wires handlers for the Click event of btnOK and btnCancel.

The event handler for the Load event of the form checks to see if the field key is not null. If it isn't it
sets the Text properties of tbName and tbType to be the Name and Type fields of key. The event
handler for FormClosing is the same as before. If the reason for closing the form is the user is trying to
close the form the event is canceled.

In the Click event handler for btnOK I check to see if the Text property of tbName is null or empty. If
it is I display a message box stating that you need to give the key a name and then exit the method. I'm
not enforcing that a key have a type associated with it. If you want to add the functionality in you can
do the same as I did for tbName with tbType. If tbName had a value I assign the key field a new
instance of KeyData. I then set the Name and Type fields to be the Text property of tbName and
tbType respectively. To allow the form to close I unsubscribe the FormClosing event handler and call
the Close method to close the form.

The Click event handler for btnCancel sets the key field to null. It then unsubscribes the FormClosing
event and calls the Close method of the form. Just like in the other forms for a specific type of item.

Time to code the logic for FormKey. Right click FormKey in the solution explorer and select View
Code. Change the code for FormKey to the following.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.IO;

using RpgLibrary.CharacterClasses;
using RpgLibrary.ItemClasses;

namespace RpgEditor
{
 public partial class FormKey : FormDetails
 {
 #region Field Region
 #endregion

 #region Property Region
 #endregion

 #region Constructor Region

 public FormKey()
 {
 InitializeComponent();

 btnAdd.Click += new EventHandler(btnAdd_Click);
 btnEdit.Click += new EventHandler(btnEdit_Click);
 btnDelete.Click += new EventHandler(btnDelete_Click);
 }

 #endregion

 #region Event Handler Region

 void btnAdd_Click(object sender, EventArgs e)
 {
 using (FormKeyDetails frmKeyDetails = new FormKeyDetails())
 {
 frmKeyDetails.ShowDialog();

 if (frmKeyDetails.Key != null)
 {
 AddKey(frmKeyDetails.Key);
 }
 }
 }

 void btnEdit_Click(object sender, EventArgs e)
 {
 if (lbDetails.SelectedItem != null)
 {
 string detail = lbDetails.SelectedItem.ToString();
 string[] parts = detail.Split(',');
 string entity = parts[0].Trim();

 KeyData data = itemManager.KeyData[entity];
 KeyData newData = null;

 using (FormKeyDetails frmKeyData = new FormKeyDetails())
 {
 frmKeyData.Key = data;
 frmKeyData.ShowDialog();

 if (frmKeyData.Key == null)
 return;

 if (frmKeyData.Key.Name == entity)
 {
 itemManager.KeyData[entity] = frmKeyData.Key;
 FillListBox();
 return;
 }

 newData = frmKeyData.Key;
 }

 DialogResult result = MessageBox.Show(
 "Name has changed. Do you want to add a new entry?",
 "New Entry",
 MessageBoxButtons.YesNo);

 if (result == DialogResult.No)
 return;

 if (itemManager.KeyData.ContainsKey(newData.Name))
 {
 MessageBox.Show("Entry already exists. Use Edit to modify the entry.");
 return;
 }

 lbDetails.Items.Add(newData);
 itemManager.KeyData.Add(newData.Name, newData);
 }
 }

 void btnDelete_Click(object sender, EventArgs e)
 {
 if (lbDetails.SelectedItem != null)
 {
 string detail = (string)lbDetails.SelectedItem;
 string[] parts = detail.Split(',');
 string entity = parts[0].Trim();

 DialogResult result = MessageBox.Show(
 "Are you sure you want to delete " + entity + "?",
 "Delete",
 MessageBoxButtons.YesNo);

 if (result == DialogResult.Yes)
 {
 lbDetails.Items.RemoveAt(lbDetails.SelectedIndex);
 itemManager.KeyData.Remove(entity);

 if (File.Exists(FormMain.ItemPath + @"\Key\" + entity + ".xml"))
 File.Delete(FormMain.ItemPath + @"\Key\" + entity + ".xml");
 }
 }
 }

 #endregion

 #region Method Region

 public void FillListBox()
 {
 lbDetails.Items.Clear();

 foreach (string s in FormDetails.ItemManager.KeyData.Keys)
 lbDetails.Items.Add(FormDetails.ItemManager.KeyData[s]);
 }

 private void AddKey(KeyData keyData)
 {
 if (FormDetails.ItemManager.KeyData.ContainsKey(keyData.Name))
 {
 DialogResult result = MessageBox.Show(
 keyData.Name + " already exists. Overwrite it?",
 "Existing key",
 MessageBoxButtons.YesNo);

 if (result == DialogResult.No)
 return;

 itemManager.KeyData[keyData.Name] = keyData;
 FillListBox();

 return;
 }

 itemManager.KeyData.Add(keyData.Name, keyData);
 lbDetails.Items.Add(keyData);
 }

 #endregion
 }
}

Again, this should look familiar as other forms use the same code. The difference is that instead of
working with armor, shields, or weapons, I'm working with keys. There is the using statement for the
System.IO name space. Event handlers for the click event of the buttons are wired in the constructors.
The Click event handler of btnAdd creates a form in a using block. I show the form. If the Key
property of the form is not null I call the AddKey method passing in the Key property. The Click event
handler of btnEdit checks to see if the SelectedItem of lbDetails is not null. It parses the string to get
the name of the key. It then gets the KeyData for the selected item and sets newData to null. In a using
statement a form is created. The Key property of the form is set to the KeyData of SelectedItem. I call
the ShowDialog method to display the form. If the Key property of form is null I exit the method. If
the name is the same as before I assign the entry in the item manager to be the new key, call
FillListBox to update the key and exit the method. I then set newData to be the Key property of the
form. The name of the key changed so I display a message box asking if the new key should be added.
If the result is no I exit the method. If there is a key with that name already I display a message box and
exit. If there wasn't I add the new key to the list box and the item manager. The Click event handler for
btnDelete checks to make sure that the SelectedItem of the list box is not null. It parses the selected
item and displays a message box asking if the key should be deleted. If the result of the message box is
Yes I remove the key from the list box and I remove if from the item manager as well. I then delete the
file, if it exists.

I noticed something in my code that really should be fixed. In the code of FormWeapon I have as the
class name Weapons instead of FormWeapon. If you have that problem as well this is a good time to
fix it. Right click FormWeapon in the solution explorer and select View Code. Place your cursor over
Weapons and press F2 to rename it. In the dialog box that pops up replace Weapons with
FormWeapon and press OK. In the second dialog box that pops up just select OK.

Before I get to adding these forms to the editor I want to add in forms that work with ChestData. Right
click RpgEditor in the solution explorer, select Add and then Windows Form. Name this new form
FormChest. Set the Size property of the form to be the Size property of your FormDetails. Set the
MinimizeBox property to false and the Text property to Chests. You will now want to have
FormChest inherit from FormDetails instead of Form. Right click FormChest in the solution
explorer and select View Code. Change the code to the following.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace RpgEditor
{
 public partial class FormChest : FormDetails
 {

 public FormChest()
 {
 InitializeComponent();
 }
 }
}

You will also want a form for creating chests. Right click the RpgEditor project in the solution
explorer, select Add and then Windows Form. Name this new form FormChestDetails. My finished
form in the designer is next.

I set a few properties for the form. I set ControlBox to False, FormBorderStyle to FixedDialog and
Text to Chest. Set StartPosition to CenterParent as well.

There are a lot of controls on the form and I tried to group them logically. First, make your form a lot
bigger to house all of the controls. The first control I dragged onto the form was a Label and set its
Text property to Chest Name:. I then dragged a Text Box beside the Label and set its Name property
to tbName. I also made the Text Box a little wider. Below the Text Box I dragged a Group Box to
group the items related to the lock on the chest together. I set that Group Box's Text property to Lock
Properties. I dragged a Check Box onto that Group Box and set its Name to cbLock and its Text to
Locked. Under the Check Box I dragged a Label and Combo Box. Set the Label's Text property to
Lock Difficulty: and the Combo Box's Name property to cboDifficulty. I then dragged a Label and
set its Text property to Key Name: and a Text Box beside that and set its Name property to
tbKeyName. I dragged another Label and Text Box under those two. The Label's Text property was

set to Key Type: and the Text Box's Name was set to tbKeyType. I then dragged a Label and
Numeric Up Down onto the Group Box. I set the Text property of the Label to Keys Needed: and the
Name property of the Numeric Up Down to nudKeys. I also set the Enabled property of the Combo
Box, Text Boxes, and Numeric Up Down to False initially. The will be enabled if the user checks the
Check Box to be checked.

I dragged a second Group Box onto the form below the Lock Properties Group Box and set the width
to be the same width. I set the Text property of the second Group Box to Trap Properties. I dragged a
Check Box onto that Group Box and set its Name property to be cbTrap. I set then dragged a Label
and Text Box onto the second Group Box. I set the Text property of the Label to Trap Name: and the
Name property of the Text Box to tbTrap. I set the Enabled property of tbTrap to False as well.

I then dragged a third Group Box onto the form and sized the width to be the same as the other two. I
set its Text property to Gold Properties. I dragged a Label and Numeric Up Down onto this Group
Box. I set the Text Property of the Label to Minimum Gold: and the Name property of the Numeric
Up Down to nudMinGold. I dragged another Label and Numeric Up Down onto this Group Box. I
set the Text property of the Label to Maximum Gold: and the Name property of the Numeric Up
Down to nudMaxGold. I set the Maximum property of nudMinGold and nudMaxGold to be 10000.
You will want to tweak this number as you test your game to make sure that it is not unbalanced. If the
player accumulates too much gold and can buy really expensive and powerful items then your balance
goes out the window. The same is true if you give the player too little gold. They won't be able to
defend themselves against more powerful monsters.

I then dragged on another Group Box and set its Text property to Item Properties. I dragged a List
Box onto the Group Box and made it wider and taller. I set its Name property to lbItems. I then
dragged two Buttons below the List Box. The one on the left I named btnAdd and set its Text
property to Add. The one on the right I named btnRemove and set its Text property to Remove.

The last two controls I dragged onto the form were two Buttons. The first button, the one on the left, I
set its Name to btnOK and its Text to OK. The second I set its Name property to btnCancel and its
Text property to Cancel.

I'm going to add some logic to the form now. I'm going to skip the items for now and add that in a
future tutorial. Right click FormChestDetails in the solution explorer and select View Code. Change
the code for FormChestDetails to the following.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

using RpgLibrary.ItemClasses;
using RpgLibrary.TrapClasses;
using RpgLibrary.SkillClasses;

namespace RpgEditor
{
 public partial class FormChestDetails : Form
 {
 #region Field Region

 ChestData chest;

 #endregion

 #region Property Region

 public ChestData Chest
 {
 get { return chest; }
 set { chest = value; }
 }

 #endregion

 #region Constructor Region

 public FormChestDetails()
 {
 InitializeComponent();

 this.Load += new EventHandler(FormChestDetails_Load);
 this.FormClosing += new FormClosingEventHandler(FormChestDetails_FormClosing);

 foreach (string s in Enum.GetNames(typeof(DifficultyLevel)))
 {
 cboDifficulty.Items.Add(s);
 }

 cboDifficulty.SelectedIndex = 0;

 cbLock.CheckedChanged += new EventHandler(cbLock_CheckedChanged);
 cbTrap.CheckedChanged += new EventHandler(cbTrap_CheckedChanged);

 btnAdd.Click += new EventHandler(btnAdd_Click);
 btnRemove.Click += new EventHandler(btnRemove_Click);

 btnOK.Click += new EventHandler(btnOK_Click);
 btnCancel.Click += new EventHandler(btnCancel_Click);
 }

 #endregion

 #region Form Event Handler Region

 void FormChestDetails_Load(object sender, EventArgs e)
 {
 if (chest != null)
 {
 tbName.Text = chest.Name;

 cbLock.Checked = chest.IsLocked;
 tbKeyName.Text = chest.KeyName;
 tbKeyType.Text = chest.KeyType;
 nudKeys.Value = (decimal)chest.KeysRequired;

 tbKeyName.Enabled = chest.IsLocked;
 tbKeyType.Enabled = chest.IsLocked;
 nudKeys.Enabled = chest.IsLocked;

 cbTrap.Checked = chest.IsTrapped;
 tbTrap.Text = chest.TrapName;

 tbTrap.Enabled = chest.IsTrapped;

 nudMinGold.Value = (decimal)chest.MinGold;
 nudMaxGold.Value = (decimal)chest.MaxGold;
 }
 }

 void FormChestDetails_FormClosing(object sender, FormClosingEventArgs e)
 {
 if (e.CloseReason == CloseReason.UserClosing)
 {
 e.Cancel = true;
 }
 }

 #endregion

 #region Check Box Event Handler Region

 void cbLock_CheckedChanged(object sender, EventArgs e)
 {
 cboDifficulty.Enabled = cbLock.Checked;
 tbKeyName.Enabled = cbLock.Checked;
 tbKeyType.Enabled = cbLock.Checked;
 nudKeys.Enabled = cbLock.Checked;
 }

 void cbTrap_CheckedChanged(object sender, EventArgs e)
 {
 tbTrap.Enabled = cbTrap.Checked;
 }

 #endregion

 #region Button Event Handler Region

 void btnAdd_Click(object sender, EventArgs e)
 {
 }

 void btnRemove_Click(object sender, EventArgs e)
 {
 }

 void btnOK_Click(object sender, EventArgs e)
 {
 if (string.IsNullOrEmpty(tbName.Text))
 {
 MessageBox.Show("You must enter a name for the chest.");
 return;
 }

 if (cbTrap.Checked && string.IsNullOrEmpty(tbTrap.Text))
 {
 MessageBox.Show("You must supply a name for the trap on the chest.");
 return;
 }

 if (nudMaxGold.Value < nudMinGold.Value)
 {
 MessageBox.Show("Maximum gold in chest must be greater or equal to minimum
gold.");
 return;
 }

 ChestData data = new ChestData();

 data.Name = tbName.Text;
 data.IsLocked = cbLock.Checked;

 if (cbLock.Checked)
 {
 data.DifficultyLevel = (DifficultyLevel)cboDifficulty.SelectedIndex;
 data.KeyName = tbKeyName.Text;
 data.KeyType = tbKeyType.Text;
 data.KeysRequired = (int)nudKeys.Value;
 }

 data.IsTrapped = cbTrap.Checked;

 if (cbTrap.Checked)
 {
 data.TrapName = tbTrap.Text;
 }

 data.MinGold = (int)nudMinGold.Value;
 data.MaxGold = (int)nudMaxGold.Value;

 chest = data;
 this.FormClosing -= FormChestDetails_FormClosing;
 this.Close();
 }

 void btnCancel_Click(object sender, EventArgs e)
 {
 chest = null;
 this.FormClosing -= FormChestDetails_FormClosing;
 this.Close();
 }

 #endregion
 }
}

The code should look some what familiar. I've used the same basic code in all of the forms for creating
a specific item. There is some new stuff though. As usual there is a field and property for the type of
item that is being created, ChestData in this case.

The constructor wires several event handlers. The Load and FormClosing events are wired first. I also
fill the Combo Box with the names from the DifficultyLevel enumeration and set the SelectedIndex
of the Combo Box to 0. I then wire the handlers for the Check event of the two Check Boxes. I also
wire the handlers for all four of the buttons.

In the Load event handler I check to see if the chest field is not null. If it has a value I fill the form
with values. I set the Enabled properties of controls associated with a chest being locked to be the
IsLocked field of the chest field. So, if the chest is locked the controls will be enabled and disabled if
the chest is not locked. I do the same with the IsTrapped field and the controls associated with a chest
being trapped. I'm not worrying about items at the moment. That will be added in down the road.

There is nothing you haven't seen before in the FormClosing event handler. It just cancels the event if
the reason for closing the form is UserClosing. The event will be unsubscribed from if a chest is
successfully created or the user cancels the changes.

In the CheckChanged handlers I set the Enabled property of the controls associated with the Check
Box to the Checked property of the Check Box. If the Check Box is checked then the controls will be
enabled and disabled if the Check Box is not checked.

The Click event handler for btnOK does a little validation of the form. It checks to see if the chest has
a name. If cbTrap is checked and the Text property of tbTrap is null or empty then the user must
supply a name for the trap. Ideally you will want to confirm that the trap actually exists or in game
ignore the IsTrapped property if no trap exists. I also check to make sure that the value of max gold is
not less than min gold. I then create a new chest using the values on the form. I set the field to be the
new chest, unsubscribe from the FormClosing event handler and then close the form.

The event handler for the Click event of btnCancel holds nothing new or interesting. It just assigns the
chest field to be null, unsubscribes the FormClosing event handler and closes the form.

I'm now going to add the code to FormChest. Right click FormChest in the solution explorer and
select View Code to bring up the code. This is the code for FormChest.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.IO;

using RpgLibrary.ItemClasses;

namespace RpgEditor
{
 public partial class FormChest : FormDetails
 {
 #region Field Region
 #endregion

 #region Property Region
 #endregion

 #region Constructor Region

 public FormChest()
 {
 InitializeComponent();

 btnAdd.Click += new EventHandler(btnAdd_Click);
 btnEdit.Click += new EventHandler(btnEdit_Click);
 btnDelete.Click += new EventHandler(btnDelete_Click);
 }

 #endregion

 #region Event Handler Region

 void btnAdd_Click(object sender, EventArgs e)
 {
 using (FormChestDetails frmChestDetails = new FormChestDetails())
 {
 frmChestDetails.ShowDialog();

 if (frmChestDetails.Chest != null)
 {
 AddChest(frmChestDetails.Chest);
 }
 }
 }

 void btnEdit_Click(object sender, EventArgs e)
 {
 if (lbDetails.SelectedItem != null)
 {
 string detail = lbDetails.SelectedItem.ToString();
 string[] parts = detail.Split(',');
 string entity = parts[0].Trim();

 ChestData data = itemManager.ChestData[entity];
 ChestData newData = null;

 using (FormChestDetails frmChestData = new FormChestDetails())
 {
 frmChestData.Chest = data;
 frmChestData.ShowDialog();

 if (frmChestData.Chest == null)
 return;

 if (frmChestData.Chest.Name == entity)
 {
 itemManager.ChestData[entity] = frmChestData.Chest;
 FillListBox();
 return;
 }

 newData = frmChestData.Chest;
 }

 DialogResult result = MessageBox.Show(
 "Name has changed. Do you want to add a new entry?",
 "New Entry",
 MessageBoxButtons.YesNo);

 if (result == DialogResult.No)
 return;

 if (itemManager.ChestData.ContainsKey(newData.Name))
 {
 MessageBox.Show("Entry already exists. Use Edit to modify the entry.");
 return;
 }

 lbDetails.Items.Add(newData);
 itemManager.ChestData.Add(newData.Name, newData);
 }
 }

 void btnDelete_Click(object sender, EventArgs e)
 {
 if (lbDetails.SelectedItem != null)
 {
 string detail = (string)lbDetails.SelectedItem;
 string[] parts = detail.Split(',');
 string entity = parts[0].Trim();

 DialogResult result = MessageBox.Show(
 "Are you sure you want to delete " + entity + "?",
 "Delete",
 MessageBoxButtons.YesNo);

 if (result == DialogResult.Yes)
 {
 lbDetails.Items.RemoveAt(lbDetails.SelectedIndex);
 itemManager.ChestData.Remove(entity);

 if (File.Exists(FormMain.ItemPath + @"\Chest\" + entity + ".xml"))
 File.Delete(FormMain.ItemPath + @"\Chest\" + entity + ".xml");
 }
 }
 }

 #endregion

 #region Method Region

 public void FillListBox()
 {
 lbDetails.Items.Clear();

 foreach (string s in FormDetails.ItemManager.ChestData.Keys)

 lbDetails.Items.Add(FormDetails.ItemManager.ChestData[s]);
 }

 private void AddChest(ChestData ChestData)
 {
 if (FormDetails.ItemManager.ChestData.ContainsKey(ChestData.Name))
 {
 DialogResult result = MessageBox.Show(
 ChestData.Name + " already exists. Overwrite it?",
 "Existing Chest",
 MessageBoxButtons.YesNo);

 if (result == DialogResult.No)
 return;

 itemManager.ChestData[ChestData.Name] = ChestData;
 FillListBox();
 return;
 }

 itemManager.ChestData.Add(ChestData.Name, ChestData);
 lbDetails.Items.Add(ChestData);
 }

 #endregion
 }
}

Again, this should look familiar as other forms use the same code. The difference is that instead of
working with armor, shields, or weapons, I'm working with chests. There is the using statement for the
System.IO name space. Event handlers for the click event of the buttons are wired in the constructors.
The Click event handler of btnAdd creates a form in a using block. I show the form. If the Chest
property of the form is not null I call the AddChest method passing in the Chest property. The Click
event handler of btnEdit checks to see if the SelectedItem of lbDetails is not null. It parses the string
to get the name of the chest. It then gets the ChestData for the selected item and sets newData to null.
In a using statement a form is created. The Chest property of the form is set to the ChestData of
SelectedItem. I call the ShowDialog method to display the form. If the Chest property of form is null I
exit the method. If the name is the same as before I assign the entry in the item manager to be the new
key, call FillListBox to update the key and exit the method. I then set newData to be the Chest
property of the form. The name of the chest changed so I display a message box asking if the new chest
should be added. If the result is no I exit the method. If there is a chest with that name already I display
a message box and exit. If there wasn't I add the new chest to the list box and the item manager. The
Click event handler for btnDelete checks to make sure that the SelectedItem of the list box is not null.
It parses the selected item and displays a message box asking if the chest should be deleted. If the result
of the message box is Yes I remove the chest from the list box and I remove if from the item manager
as well. I then delete the file, if it exists.

The last thing I'm going to tackle in the editor is adding the functionality for the new forms. That will
be done in FormMain. I need to update the form a little to handle chests and keys. They will have
menu entries of their own. Right click FormMain in the solution explorer and select View Designer.
Click the Menu Strip on the form. Beside the Items entry add a new entry &Keys. Set the Enabled
property of this item to False. Beside the Keys entry add a new entry C&hests and set its Enabled
proeprty to False as well. Your menu bar should resemble the following.

I'm going to end this tutorial here and continue it in a part B. The plan was to add in keys and chests to
the editor and read them in to the game. I encourage you to visit the news page of my site, XNA Game
Programming Adventures, for the latest news on my tutorials.

Good luck in your game programming adventures!

Jamie McMahon

http://xnagpa.net/news.html
http://xnagpa.net/news.html

