
XNA 4.0 RPG Tutorials

Part 17

Finding Loot

I'm writing these tutorials for the new XNA 4.0 framework. The tutorials will make more sense if they
are read in order. You can find the list of tutorials on the XNA 4.0 RPG tutorials page of my web site. I
will be making my version of the project available for download at the end of each tutorial. It will be
included on the page that links to the tutorials.

This tutorial is going to cover adding in loot for the player to find and pick up be it in chests, boxes,
barrels, whatever. After I handle the combat engine I will add in mobs, any enemy the player kills,
dropping items.

The first thing we are going to need is a basic sprite class that we can use to draw sprites with. So, I
added a class called BaseSprite to the SpriteClasses folder in the XrprLibrary project. Right click
the SpriteClasses folder, select Add and then Class. Call the class BaseSprite. This is the code.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;
using XRpgLibrary.TileEngine;

namespace XRpgLibrary.SpriteClasses
{
 public class BaseSprite
 {
 #region Field Region

 protected Texture2D texture;
 protected Rectangle sourceRectangle;

 protected Vector2 position;
 protected Vector2 velocity;
 protected float speed = 2.0f;

 #endregion

 #region Property Region

 public int Width
 {
 get { return sourceRectangle.Width; }
 }

 public int Height
 {
 get { return sourceRectangle.Height; }
 }

 public Rectangle Rectangle
 {

http://xnagpa.net/xnarpg4tutorials.html

 get
 {
 return new Rectangle(
 (int)position.X,
 (int)position.Y,
 Width,
 Height);
 }
 }

 public float Speed
 {
 get { return speed; }
 set { speed = MathHelper.Clamp(speed, 1.0f, 16.0f); }
 }

 public Vector2 Position
 {
 get { return position; }
 set
 {
 position = value;
 }
 }

 public Vector2 Velocity
 {
 get { return velocity; }
 set
 {
 velocity = value;
 if (velocity != Vector2.Zero)
 velocity.Normalize();
 }
 }

 #endregion

 #region Constructor Region

 public BaseSprite(Texture2D image, Rectangle? sourceRectangle)
 {
 this.texture = image;

 if (sourceRectangle.HasValue)
 this.sourceRectangle = sourceRectangle.Value;
 else
 this.sourceRectangle = new Rectangle(
 0,
 0,
 image.Width,
 image.Height);

 this.position = Vector2.Zero;
 this.velocity = Vector2.Zero;
 }

 public BaseSprite(Texture2D image, Rectangle? sourceRectangle, Point tile)
 : this(image, sourceRectangle)
 {
 this.position = new Vector2(
 tile.X * Engine.TileWidth,
 tile.Y * Engine.TileHeight);
 }

 #endregion

 #region Method Region
 #endregion

 #region Virtual Method region

 public virtual void Update(GameTime gameTime)
 {
 }

 public virtual void Draw(GameTime gameTime, SpriteBatch spriteBatch)
 {
 spriteBatch.Draw(
 texture,
 Position,
 sourceRectangle,
 Color.White);
 }

 #endregion
 }
}

Compared to some of the classes in the game it is pretty straight forward. The fields came from the
AnimatedSprite class. They are included as down the road they could be useful. I added a few using
statements to bring some of the XNA framework classes into scope, as well as the TileEngine classes.
When you create a sprite you can specify what tile it is in, rather than saying it is at pixel (x,y) in the
map. To do that I need the Engine class.

There are a number of protected fields in the class. They are protected because down the road you
might want a special kind of sprite. The fields are a Texture2D for the sprite. A Rectangle that is a
source rectangle, if you want to use sprite sheets. There are Vector2 fields for the position of the sprite
and the velocity of the sprite. For items sprites will remain in the same place. But, you could have a
sprite that bobs up and down and including a velocity was a good idea. There is also a float field for the
speed of the sprite.

There are a few properties that expose some information about the sprite. The Width and Height
properties return the Width and Height properties of the sourceRectangle field. The Speed, Position,
and Velocity properties were taken from the AnimatedSprite class.

I added in two constructors for this class. The first takes a Texture2D for the sprite and a Rectangle for
the source rectangle of the sprite. The Rectangle parameter is a nullable parameter, indicated by the ?
after Rectangle. So, if you don't want to specify a source rectangle you can pass in null for that
parameter and the class will use the entire image. The second constructor takes a third parameter, a
Point that represents the tile the sprite is in.

The first constructor sets the texture field with the image parameter. It checks to see if the Rectangle
parameter has a value using the HasValue property. If it does I set the sourceRectangle field to be the
sourceRectangle parameter. If it doesn't have a value I create a new Rectangle using the width and
height of the image passed in. I then set the position and velocity fields to be the Zero vector.

The second constructor calls the first constructor using this to reference that constructor with the image
and sourceRectangle parameters passed in. To set the position of the sprite, in tiles, I multiply the X
property of the Point by the TileWidth and the the Y property of the Point by the TileHeight from the
Engine class. What is important here is that you create sprites after creating an instance of the Engine
class. Otherwise the TileWidth and TileHeight will both be 0 and the sprites will all line up in the top
left corner of the map. You are not going to have to worry about it as when the GamePlayScreen is
created an Engine class is constructed. Just be aware that limitation is there.

I'm going to add a class that holds a BaseItem from the RpgLibrary and has a BaseSprite as well.
This will allow you to have icons for your items. This will be helpful when I get to inventory and you
can have icons on the screen in your game, for a chest for example. This is a hybrid class and is a cross
between an item and a sprite. I decided the best course of action with to create an ItemClasses folder in
the XRpgLibrary to represent items like this. Right click the XrpgLibrary, select Add and then New
Folder. Name this new folder ItemClasses. Right click the ItemClasses folder, select Add and then
Class. Name this new class ItemSprite. This is the code for that class.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;

using RpgLibrary.ItemClasses;
using XRpgLibrary.SpriteClasses;

namespace XRpgLibrary.ItemClasses
{
 public class ItemSprite
 {
 #region Field Region

 BaseSprite sprite;
 BaseItem item;

 #endregion

 #region Property Region

 public BaseSprite Sprite
 {
 get { return sprite; }
 }

 public BaseItem Item
 {
 get { return item; }
 }

 #endregion

 #region Constructor Region

 public ItemSprite(BaseItem item, BaseSprite sprite)
 {
 this.item = item;
 this.sprite = sprite;
 }

 #endregion

 #region Method Region
 #endregion

 #region Virtual Method region

 public virtual void Update(GameTime gameTime)
 {
 sprite.Update(gameTime);
 }

 public virtual void Draw(GameTime gameTime, SpriteBatch spriteBatch)
 {

 sprite.Draw(gameTime, spriteBatch);
 }

 #endregion
 }
}

This is another straight forward class. There are using statements to bring a few name space into scope.
There are two fields and two properties to expose the fields. The first field is a BaseSprite and the
second is a BaseItem. The property Sprite exposes the sprite field and the property Item exposes the
item field. The constructor takes two parameters. A BaseItem for the item and a BaseSprite for the
sprite. It just sets the fields to the values passed in. I added Update and Draw methods that are virtual
so you can create classes that inherit from this one and override those properties if needed. They have
the same parameters as the BaseSprite class. They just call the Update and Draw methods of the
sprite field.

Before I get to chests I thought I'd add in a couple place holder classes that will be needed for chests.
What fun is having a chests if you can't trap them! You need to make your thief characters feel useful
after all. To handle that I added in a few place holders for traps. I added them to the RpgLibrary as
they deal more with mechanics than with XNA. Right click the RpgLibrary, select Add and then New
Folder. Name this new folder TrapClasses. To this folder you are going to want to add three empty
classes, I included the regions in mine. Right click the TrapClasses folder three times, selecting Add
and then Class each time. Name the classes Trap, TrapData, and TrapManager. The code for my
classes follows next in that order.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.TrapClasses
{
 public class Trap
 {
 #region Field Region
 #endregion

 #region Property Region
 #endregion

 #region Constructor Region
 #endregion

 #region Method Region
 #endregion

 #region Virtual Method region
 #endregion
 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.TrapClasses
{
 public class TrapData
 {
 #region Field Region
 #endregion

 #region Property Region
 #endregion

 #region Constructor Region
 #endregion

 #region Method Region
 #endregion

 #region Virtual Method region
 #endregion
 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.TrapClasses
{
 public class TrapManager
 {
 #region Field Region
 #endregion

 #region Property Region
 #endregion

 #region Constructor Region
 #endregion

 #region Method Region
 #endregion

 #region Virtual Method region
 #endregion
 }
}

Containers that the player can interact with that hold items, and gold, are all going to be lumped into
one class, a Chest class. The containers can be anything you can imagine though and you're only
limited by the graphics you have. To get started, right click the ItemClasses in the RpgLibrary, select
Add and then Class. Name this class ChestData. This is the code for that class.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.ItemClasses
{
 public class ChestData
 {
 public string Name;
 public string TextureName;
 public bool IsTrapped;
 public bool IsLocked;
 public string TrapName;
 public string KeyName;
 public int MinGold;
 public int MaxGold;
 public Dictionary<string, string> ItemCollection;

 public ChestData()
 {

 ItemCollection = new Dictionary<string, string>();
 }

 public override string ToString()
 {
 string toString = Name + ", ";
 toString += TextureName + ", ";
 toString += IsTrapped.ToString() + ", ";
 toString += IsLocked.ToString() + ", ";
 toString += TrapName + ", ";
 toString += KeyName + ", ";
 toString += MinGold.ToString() + ", ";
 toString += MaxGold.ToString();

 foreach (KeyValuePair<string, string> pair in ItemCollection)
 {
 toString += ", " + pair.Key + "+" + pair.Value;
 }

 return toString;
 }
 }
}

This is a data class that will be used to generate chests on the fly and in the editor. There are a number
of fields. The Name field is the name of the chest. The TextureName field is the name of the texture
for the chest. The Boolean fields, IsTrapped and IsLocked, tell if a chest is trapped or if it locked. The
TrapName and KeyName are used if the chest has a trap and requires a special key to open it. If they
are set to none then there is no trap and a special key isn't needed to open the chest. The MinGold and
MaxGold fields represent the minimum and maximum gold a chest can hold. If both are set to zero
then the chest holds no gold. The ItemCollection field is a Dictionary<string, string> that holds the
items in the chest. The first string is the name of the item and the second string is type of the item.
There is a limitation here though. A chest can't hold more than one of any particular item. It is good
enough for right now though.

Like the other data classes for items there is an override of the ToString method. I append the fields,
plus a comma and a space, using the ToString method if needed to convert a field to a string. The
ItemCollection is the interesting item here though. In a foreach loop I loop through all of the
KeyValuePairs in the dictionary. I append a comma and a space and for the pair I append the Key a +
and the Value. This does mean that your item names can't use a + sign. If that is an issue, say you want
a longsword +5, you can change to + to another symbol that you don't use. It then returns the string that
was created.

I'm also going to add a basic class for chests. It will need to be fleshed out more but it will be enough to
get chests into the game. Right click the ItemClasses folder in the RpgLibrary, select Add and then
Class. Name this new class Chest. This is the code so far.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using RpgLibrary.TrapClasses;

namespace RpgLibrary.ItemClasses
{
 public class Chest : BaseItem
 {
 #region Field Region

 static Random Random = new Random();

 ChestData chestData;

 #endregion

 #region Property Region

 public bool IsLocked
 {
 get { return chestData.IsLocked; }
 }

 public bool IsTrapped
 {
 get { return chestData.IsTrapped; }
 }

 public int Gold
 {
 get
 {
 if (chestData.MinGold == 0 && chestData.MaxGold == 0)
 return 0;

 int gold = Random.Next(chestData.MinGold, chestData.MaxGold);
 chestData.MinGold = 0;
 chestData.MaxGold = 0;

 return gold;
 }
 }

 #endregion

 #region Constructor Region

 public Chest(ChestData data)
 : base(data.Name, "", 0, 0)
 {
 this.chestData = data;
 }

 #endregion

 #region Method Region
 #endregion

 #region Virtual Method region

 public override object Clone()
 {
 ChestData data = new ChestData();
 data.Name = chestData.Name;
 data.IsLocked = chestData.IsLocked;
 data.IsTrapped = chestData.IsTrapped;
 data.TextureName = chestData.TextureName;
 data.TrapName = chestData.TrapName;
 data.KeyName = chestData.KeyName;
 data.MinGold = chestData.MinGold;
 data.MaxGold = chestData.MaxGold;

 foreach (KeyValuePair<string, string> pair in chestData.ItemCollection)
 data.ItemCollection.Add(pair.Key, pair.Value);

 Chest chest = new Chest(data);
 return chest;
 }

 #endregion
 }
}

There is one using statement that I added for the TrapClasses in the RpgLibrary. It's not used right
now but it will be required. There is a static field that is a Random object. It will be used to generate
the gold that a chest contains. There is a ChestData field that holds the ChestData associated with the
chest. The IsLocked property exposes the IsLocked field in the ChestData object. The IsTrapped
property works with the IsTrapped field in the ChestData object. The Gold property is interesting. It
checks to see if MinGold and MaxGold are both 0 and if they the property returns 0. It then generates
a random number between MinGold and MaxGold. They are then set to be 0 and the number
generated is returned. What that boils down to is that the chest will remain after it is opened, in case the
player can't carry all of the items for example, and if the player goes back to the chest and opens it
again they won't get gold from it multiple times. That would quickly make your most expensive items
in a shop purchasable and blow your game balance out of the water.

The constructor of the Chest class takes a ChestData parameter. For the call to the constructor of the
base class it passes in the Name field, an empty string for the type, and 0 for the price and weight. It
then sets the ChestData field.

The Clone method first creates a new ChestData object. It then assigns the fields from the field. To
handle the Dictionary<string, string> I loop through all of the KeyValuePair<string, string> in the
collection. I then add a new item to the ItemCollection of the new ChestData object. I then create a
new chest using the new ChestData object and return it. It might not be necessary to create a new
ChestData object but it is good programming practise to reduce side effects. I say that because
ChestData is a class and that makes it a reference type. Passing around references directly you can
inadvertently change the original reference and that would be a hard bug to track down. When you are
passing around reference types and you think the original could be changed it is always better to pass a
copy.

To actually create chests you will really want to update the editor, and add a class for keys. I'm going to
go a head and add chests to the Level class though. You are going to need a few graphics for chests and
other containers then. I created a PNG file from a tile set off the web that has a chest in it. I will add
other containers as I find them and when I use them in future tutorials I'll link to the graphics. You can
find my chest at http://xnagpa.net/xna4/downloads/containers1.zip. Download and extract the files.
Right click the the EyesOfTheDragonContent project, select Add and then New Folder. Name this
new folder ObjectSprites. To this folder you want to add the containers.png file. Right click the
ObjectSprites folder, select Add and then Existing Item. Navigate to the containers.png file and
select it.

Chests are tied to a specific map, and maps are tied to specific levels. So chests, like characters, belong
in the Level class. Update the Level class to the following.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using XRpgLibrary.TileEngine;
using XRpgLibrary.CharacterClasses;
using XRpgLibrary.ItemClasses;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;

namespace XRpgLibrary.WorldClasses

http://xnagpa.net/xna4/downloads/containers1.zip

{
 public class Level
 {
 #region Field Region

 readonly TileMap map;
 readonly List<Character> characters;
 readonly List<ItemSprite> chests;

 #endregion

 #region Property Region

 public TileMap Map
 {
 get { return map; }
 }

 public List<Character> Characters
 {
 get { return characters; }
 }

 public List<ItemSprite> Chests
 {
 get { return chests; }
 }

 #endregion

 #region Constructor Region

 public Level(TileMap tileMap)
 {
 map = tileMap;
 characters = new List<Character>();
 chests = new List<ItemSprite>();
 }

 #endregion

 #region Method Region

 public void Update(GameTime gameTime)
 {
 foreach (Character character in characters)
 character.Update(gameTime);

 foreach (ItemSprite sprite in chests)
 sprite.Update(gameTime);
 }

 public void Draw(GameTime gameTime, SpriteBatch spriteBatch, Camera camera)
 {
 map.Draw(spriteBatch, camera);

 foreach (Character character in characters)
 character.Draw(gameTime, spriteBatch);

 foreach (ItemSprite sprite in chests)
 sprite.Draw(gameTime, spriteBatch);
 }

 #endregion
 }
}

The first new thing is that there is a using statement bring the ItemClasses of the XRpgLibrary into
scope. I added a List<ItemSprite> called chests to hold the chests in a level. It is readonly so it can't

be assigned to outside of the constructor or as an initializer in the class. In the constructor I create the
List<ItemSprite>. In the Update method I loop through all of the ItemSprite objects in the list of
ItemSprites and call their Update method passing in the GameTime parameter. I do the same in the
Draw method, except I Draw instead of Update, passing in the SpriteBatch parameter as well.

The last thing I want to do in this tutorial is to actually have a chest show up. I thought the best place to
do that would be in the CreateWorld method of the CharacterGeneratorScreen. You could also
make the same changes to the LoadGameScreen but I'm not going to do that officially. The first thing
you are going to want to do is to add using statements for both ItemClasses name spaces of the
libraries. Add these two using statements to the CharacterGeneratorScreen.

using XRpgLibrary.ItemClasses;
using RpgLibrary.ItemClasses;

It would be a good idea to load the texture for containers in the LoadContent method. Add the
following field and change the LoadContent method to the following.

Texture2D containers;

protected override void LoadContent()
{
 base.LoadContent();

 LoadImages();
 CreateControls();
 containers = Game.Content.Load<Texture2D>(@"ObjectSprites\containers");
}

Now, in the CreateWorld method you want to create a chest and added it to the list of chests for the
level. Change the CreateWorld method to the following.

private void CreateWorld()
{
 Texture2D tilesetTexture = Game.Content.Load<Texture2D>(@"Tilesets\tileset1");
 Tileset tileset1 = new Tileset(tilesetTexture, 8, 8, 32, 32);

 tilesetTexture = Game.Content.Load<Texture2D>(@"Tilesets\tileset2");
 Tileset tileset2 = new Tileset(tilesetTexture, 8, 8, 32, 32);

 List<Tileset> tilesets = new List<Tileset>();
 tilesets.Add(tileset1);
 tilesets.Add(tileset2);

 MapLayer layer = new MapLayer(100, 100);

 for (int y = 0; y < layer.Height; y++)
 {
 for (int x = 0; x < layer.Width; x++)
 {
 Tile tile = new Tile(0, 0);

 layer.SetTile(x, y, tile);
 }
 }

 MapLayer splatter = new MapLayer(100, 100);

 Random random = new Random();

 for (int i = 0; i < 100; i++)
 {
 int x = random.Next(0, 100);

 int y = random.Next(0, 100);
 int index = random.Next(2, 14);

 Tile tile = new Tile(index, 0);
 splatter.SetTile(x, y, tile);
 }

 splatter.SetTile(1, 0, new Tile(0, 1));
 splatter.SetTile(2, 0, new Tile(2, 1));
 splatter.SetTile(3, 0, new Tile(0, 1));

 List<MapLayer> mapLayers = new List<MapLayer>();
 mapLayers.Add(layer);
 mapLayers.Add(splatter);

 TileMap map = new TileMap(tilesets, mapLayers);
 Level level = new Level(map);

 ChestData chestData = new ChestData();
 chestData.Name = "Some Chest";
 chestData.MinGold = 10;
 chestData.MaxGold = 101;

 Chest chest = new Chest(chestData);

 BaseSprite chestSprite = new BaseSprite(
 containers,
 new Rectangle(0, 0, 32, 32),
 new Point(10, 10));

 ItemSprite itemSprite = new ItemSprite(
 chest,
 chestSprite);
 level.Chests.Add(itemSprite);

 World world = new World(GameRef, GameRef.ScreenRectangle);
 world.Levels.Add(level);
 world.CurrentLevel = 0;

 GamePlayScreen.World = world;
}

The new code starts just after creating the Level object. What I did was create a ChestData object and
set the Name property to “Some Chest” and MinGold to 10 and MaxGold to 101. I then created a
new Chest object. The next step was to create a BaseSprite for the chest. For the parameters to the
constructor I use the containers Textur2D for, a Rectangle with 0 for X and Y, and 32 for the width
and height. I also placed it at tile (10, 10). I then create an ItemSprite passing in the chest I created and
the base sprite. It is then added to the Chests field of the Level.

So, if you build and run your game and start a new game you will see a chest! The player isn't
interacting with the chest but it is a start.
I'm going to end this tutorial here. The plan was just to add in some place holder classes that will be
needed shortly. I encourage you to visit the news page of my site, XNA Game Programming
Adventures, for the latest news on my tutorials.

Good luck in your game programming adventures!

Jamie McMahon

http://xnagpa.net/news.html
http://xnagpa.net/news.html
http://xnagpa.net/news.html

