
XNA 4.0 RPG Tutorials

Part 16

Quests and Conversations

I'm writing these tutorials for the new XNA 4.0 framework. The tutorials will make more sense if they
are read in order. You can find the list of tutorials on the XNA 4.0 RPG tutorials page of my web site. I
will be making my version of the project available for download at the end of each tutorial. It will be
included on the page that links to the tutorials.

In this tutorial I'm going to get started with adding quests and conversations to the game. I will be
adding in place holders that will be filled in as the game progresses, like I did for skills, spells, and
talents. I will then fill out the Entity class to use the new classes and add in a couple classes to the
XRpgLibrary as well.

To get started, right click the RpgLibrary project, select Add and then New Folder. Name this new
folder QuestClasses. I'm going to add three classes to this folder. For quests I'm going to implement
quests that have multiple steps. So the first class to add is a class for the steps. Right click the
QuestClasses folder, select Add and then Class. Name this new class QuestStep. For now this is just a
place holder. Later on down the road it will be added to. This is the code for that class so far.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.QuestClasses
{
 public class QuestStep
 {
 #region Field Region
 #endregion

 #region Property Region
 #endregion

 #region Constructor Region
 #endregion

 #region Method Region
 #endregion

 #region Virtual Method region
 #endregion
 }
}

As I mentioned, it is a place holder class that will be filled over time. It is just needed for a few things
and I get started with them now. You will want to right click the QuestClasses folder again, select Add
and then Class. Name this new class Quest. The code for the class is the same, just a bare class split up
with regions.

http://xnagpa.net/xnarpg4tutorials.html

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.QuestClasses
{
 public class Quest
 {
 #region Field Region
 #endregion

 #region Property Region
 #endregion

 #region Constructor Region
 #endregion

 #region Method Region
 #endregion

 #region Virtual Method region
 #endregion
 }
}

As will all of the other classes it is a good idea to have a class to manage quests in the game, especially
for the editor. Right click the QuestClasses folder, select Add and then Class. Name this new class
QuestManager. There is actually something to this class. It should look familiar as I've used the same
format several times now.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.QuestClasses
{
 public class QuestManager
 {
 #region Field Region

 readonly Dictionary<string, Quest> quests;

 #endregion

 #region Property Region

 public Dictionary<string, Quest> Quests
 {
 get { return quests; }
 }

 #endregion

 #region Constructor Region

 public QuestManager()
 {
 quests = new Dictionary<string, Quest>();
 }

 #endregion

 #region Method Region
 #endregion

 #region Virtual Method region
 #endregion
 }
}

The next set of classes that I'm going to add are for conversations. I like the approach that Jim Perry
took in his book, RPG Programming using XNA Game Studio 3.0, for working with conversations
using nodes. In my XNA 3.0 RPG tutorials I used a system similar to the one that Nick Gravlyn used in
his tile engine video tutorials. I'm trying to reduce the complexity of handling conversations.

I'm going to give the instructions for adding all the classes, then the code. Right click the RpgLibrary,
select Add and then New Folder. Name this new folder ConversationClasses. Right click that folder,
select Add and then Class. Name this new class ConversationNode. Right click the folder, select Add
and then Class. Name the class Conversation. Right click the folder again, select Add and then Class.
Name this new class ConversationManager. The code for all three classes follows next.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.ConversationClasses
{
 public class ConversationNode
 {
 #region Field Region
 #endregion

 #region Property Region
 #endregion

 #region Constructor Region
 #endregion

 #region Method Region
 #endregion

 #region Virtual Method region
 #endregion
 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.ConversationClasses
{
 public class Conversation
 {
 #region Field Region
 #endregion

 #region Property Region
 #endregion

 #region Constructor Region
 #endregion

 #region Method Region
 #endregion

 #region Virtual Method region
 #endregion

 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.ConversationClasses
{
 public class ConversationManager
 {
 #region Field Region

 readonly Dictionary<string, Conversation> conversations;

 #endregion

 #region Property Region

 public Dictionary<string, Conversation> Conversations
 {
 get { return conversations; }
 }

 #endregion

 #region Constructor Region

 public ConversationManager()
 {
 conversations = new Dictionary<string, Conversation>();
 }

 #endregion

 #region Method Region
 #endregion

 #region Virtual Method region
 #endregion
 }
}

Nothing really new there either. It is all code that you've seen before. Now I'm going to get in to some
new stuff. The first thing I want to do is to update the Entity class. What I want to do is to add fields
and properties for skills, spells, and talents. I added in new regions to the Entity class. I added in a
Skill Field and Property region, a Spell Field and Property region, and a Talent Field and Property
region. To these regions I added a field for each of the items and a field for modifiers of the items. Add
the following regions to the Entity class.

#region Skill Field and Property Region

readonly Dictionary<string, Skill> skills;
readonly List<Modifier> skillModifiers;

public Dictionary<string, Skill> Skills
{
 get { return skills; }
}

public List<Modifier> SkillModifiers
{
 get { return skillModifiers; }
}

#endregion

#region Spell Field and Property Region

readonly Dictionary<string, Spell> spells;
readonly List<Modifier> spellModifiers;

public Dictionary<string, Spell> Spells
{
 get { return spells; }
}

public List<Modifier> SpellModifiers
{
 get { return spellModifiers; }
}

#endregion

#region Talent Field and Property Region

readonly Dictionary<string, Talent> talents;
readonly List<Modifier> talentModifiers;

public Dictionary<string, Talent> Talents
{
 get { return talents; }
}

public List<Modifier> TalentModifiers
{
 get { return talentModifiers; }
}

#endregion

The next step is to create the fields. I did that in the private constructor for the class. I also made a
change to the public constructor to call the private constructor. You can do that using this like you
would use base to call a base constructor. Change the constructor region of the Entity class to the
following.

#region Constructor Region

private Entity()
{
 Strength = 10;
 Dexterity = 10;
 Cunning = 10;
 Willpower = 10;
 Magic = 10;
 Constitution = 10;

 health = new AttributePair(0);
 stamina = new AttributePair(0);
 mana = new AttributePair(0);

 skills = new Dictionary<string, Skill>();
 spells = new Dictionary<string, Spell>();
 talents = new Dictionary<string, Talent>();

 skillModifiers = new List<Modifier>();
 spellModifiers = new List<Modifier>();
 talentModifiers = new List<Modifier>();
}

public Entity(
 string name,

 EntityData entityData,
 EntityGender gender,
 EntityType entityType) : this()
{
 EntityName = name;
 EntityClass = entityData.EntityName;
 Gender = gender;
 EntityType = entityType;
 Strength = entityData.Strength;
 Dexterity = entityData.Dexterity;
 Cunning = entityData.Cunning;
 Willpower = entityData.Willpower;
 Magic = entityData.Magic;
 Constitution = entityData.Constitution;

 health = new AttributePair(0);
 stamina = new AttributePair(0);
 mana = new AttributePair(0);
}

#endregion

The private constructor will be called before the public constructor. So the code there will be executed
before the other constructor's code, the one that takes an EntityData parameter.

Another thing that I added to the Entity class was a method to update modifiers, called Update, of
course. Change the Method region of the Entity class to the following. You may have to add it come to
think of it.

#region Method Region

public void Update(TimeSpan elapsedTime)
{
 foreach (Modifier modifier in skillModifiers)
 modifier.Update(elapsedTime);

 foreach (Modifier modifier in spellModifiers)
 modifier.Update(elapsedTime);

 foreach (Modifier modifier in talentModifiers)
 modifier.Update(elapsedTime);
}

#endregion

The Update method takes a TimeSpan parameter that represents the ElapsedGameTime from the
gameTime parameter in the Update method of XNA. In a foreach loop I loop through all of the
modifiers in each of the lists of modifiers. I call their Update methods passing in the elapsedTime
passed to the Update method. You're not going to want a lot of characters at a time as it will bog things
down. Fortunately for the most part modifiers will only be needed by party members and in combat.

Since I moved to using a transformation matrix for the tile engine to control where things are rendered
you no longer need to pass a Camera object to the Draw method of the AnimatedSprite class. Change
the Draw method of the AnimatedSprite class to the following.

public void Draw(GameTime gameTime, SpriteBatch spriteBatch)
{
 spriteBatch.Draw(
 texture, position,
 animations[currentAnimation].CurrentFrameRect,
 Color.White);
}

You will also need to update the Draw method of the Player class. You can change that method to the
following.

public void Draw(GameTime gameTime, SpriteBatch spriteBatch)
{
 sprite.Draw(gameTime, spriteBatch);
}

I want to add a new folder to the XRpgLibrary project classes that are related to characters. Right
click the XRpgLibrary, select Add and then New Folder. Name this new folder CharacterClasses. To
this folder I'm going to add two classes. Right click the CharacterClasses folder in the XRpgLibrary
select Add, and then Class. Name this new class Character. A Character will be a character in the
game that doesn't have a conversation or quest associated with them. They can also be monsters or shop
keepers. This is the code for that class.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using RpgLibrary.CharacterClasses;
using XRpgLibrary.SpriteClasses;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;

namespace XRpgLibrary.CharacterClasses
{
 public class Character
 {
 #region Field Region

 protected Entity entity;
 protected AnimatedSprite sprite;

 #endregion

 #region Property Region

 public Entity Entity
 {
 get { return entity; }
 }

 public AnimatedSprite Sprite
 {
 get { return sprite; }
 }

 #endregion

 #region Constructor Region

 public Character(Entity entity, AnimatedSprite sprite)
 {
 this.entity = entity;
 this.sprite = sprite;
 }

 #endregion

 #region Method Region
 #endregion

 #region Virtual Method region

 public virtual void Update(GameTime gameTime)
 {
 entity.Update(gameTime.ElapsedGameTime);
 sprite.Update(gameTime);
 }

 public virtual void Draw(GameTime gameTime, SpriteBatch spriteBatch)
 {
 sprite.Draw(gameTime, spriteBatch);
 }

 #endregion

 }
}

I added a couple using statements to bring some of the XNA framework classes into scope. As well as
the CharacterClasses from the RpgLibrary and the SpriteClasses of the XRpgLibrary. There are
two protected fields, Entity and AnimatedSprite. As you can guess the Entity field is the entity for the
character and the AnimatedSprite is the sprite for the character. There are two public properties to
expose their values that are read only. The constructor for this class takes two parameters. The first is
an Entity object and the second is an AnimatedSprite object. I also added in two virtual methods that
can be overridden in a class that inherits from Character. The Update method takes a GameTime
parameter. It calls the Update method of the entity field passing in the ElapsedGameTime property. It
also calls the Update method of the sprite field. The Draw method takes as parameters a GameTime
parameter and a SpriteBatch parameter. The Draw method calls the Draw method of the sprite field.

The other class I want to add will be called NonPlayerCharacter. It is a bit of a misnomer as the other
class is for NPCs. These are just special NPCs that have conversations and quests associated with them.
Right click the CharacterClasses folder of the XRpgLibrary project, select Add and then Class.
Name this new class NonPlayerCharacter. This is the code for that class so far.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using XRpgLibrary.SpriteClasses;

using RpgLibrary.CharacterClasses;
using RpgLibrary.ConversationClasses;
using RpgLibrary.QuestClasses;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;

namespace XRpgLibrary.CharacterClasses
{
 public class NonPlayerCharacter : Character
 {
 #region Field Region

 readonly List<Conversation> conversations;
 readonly List<Quest> quests;
 #endregion

 #region Property Region

 public List<Conversation> Conversations
 {
 get { return conversations; }
 }

 public List<Quest> Quests
 {
 get { return quests; }
 }

 public bool HasConversation
 {
 get { return (conversations.Count > 0); }
 }

 public bool HasQuest
 {
 get { return (quests.Count > 0); }
 }

 #endregion

 #region Constructor Region

 public NonPlayerCharacter(Entity entity, AnimatedSprite sprite)
 : base(entity, sprite)
 {
 conversations = new List<Conversation>();
 quests = new List<Quest>();
 }

 #endregion

 #region Method Region
 #endregion

 #region Virtual Method region

 public override void Update(GameTime gameTime)
 {
 base.Update(gameTime);
 }

 public override void Draw(GameTime gameTime, SpriteBatch spriteBatch)
 {
 base.Draw(gameTime, spriteBatch);
 }

 #endregion
 }
}

There are extra using statements to bring some classes into scope for this class. There are two new
fields in this class. The first is a List<Conversation> called conversations that holds the conversations
related to the NPC. The second is a List<Quest> called quests that holds the quests associated with the
NPC. They are readonly properties so they can be assigned to as an initializer in a class or in the
constructor of the class. That just keeps them from being changed unintentionally. There are get only
properties to expose them to other classes. There are two other properties that are associated with an
NPC. They are HasConversation and HasQuest that return Boolean values. To determine their values
I compare the Count property of the associated list with 0. If it is greater than 0 then the NPC has a
conversation or quest associated with it. The class inherits from Character so the constructor requires
an Entity and an AnimatedSprite for parameter to pass to the base class Character. In the constructor
I initialize the conversations and quests fields. I went a head and added in overrides to the Update and
Draw methods of the base class. All they do right now is call the base Update and Draw methods.

The last thing I want to do is add characters to the Level class. I'm also going to update the Draw
method to take a GameTime parameter as it is needed in the Draw method of the Character class.

Change the Level class to the following.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using XRpgLibrary.TileEngine;
using XRpgLibrary.CharacterClasses;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;

namespace XRpgLibrary.WorldClasses
{
 public class Level
 {
 #region Field Region

 readonly TileMap map;
 readonly List<Character> characters;

 #endregion

 #region Property Region

 public TileMap Map
 {
 get { return map; }
 }

 public List<Character> Characters
 {
 get { return characters; }
 }

 #endregion

 #region Constructor Region

 public Level(TileMap tileMap)
 {
 map = tileMap;
 characters = new List<Character>();
 }

 #endregion

 #region Method Region

 public void Update(GameTime gameTime)
 {
 foreach (Character character in characters)
 character.Update(gameTime);
 }

 public void Draw(GameTime gameTime, SpriteBatch spriteBatch, Camera camera)
 {
 map.Draw(spriteBatch, camera);
 foreach (Character character in characters)
 character.Draw(gameTime, spriteBatch);
 }

 #endregion
 }
}

The first thing I did was add a using statement to bring the Character class into scope for this class. I

then added a readonly field, characters, that is a List<Character>. It maybe a good idea to use a
Dictionary<string, Character> instead and I may change that. I also added in a get only property to
expose the characters field. The constructor create a new List<Character> for the level. In the
Update method I do something that isn't the most efficient thing in the world and it will be updated
later on down the road. I loop through all of the characters in the characters field and call their Update
methods. This isn't very efficient but for now it is okay. It wouldn't be a bad thing if you don't have a lot
of characters on a level. You will want to balance your levels so that you aren't bogging down your
game with a lot of entities, or game objects is a better term, and updating them needlessly. I'm also
drawing all of the characters in the level. You would more than likely only want to draw characters that
are visible. That is another bridge we can cross when we get to it.

The last thing we need to do is to update the DrawLevel method of the World class and the Draw
method of the GamePlayScreen because I added a GameTime parameter to the Draw method of the
Level class. Change the DrawLevel method of the World class to the following.

public void DrawLevel(GameTime gameTime, SpriteBatch spriteBatch, Camera camera)
{
 levels[currentLevel].Draw(gameTime, spriteBatch, camera);
}

Finally, change the Draw method of the GamePlayScreen to the following.

public override void Draw(GameTime gameTime)
{
 GameRef.SpriteBatch.Begin(
 SpriteSortMode.Deferred,
 BlendState.AlphaBlend,
 SamplerState.PointClamp,
 null,
 null,
 null,
 player.Camera.Transformation);

 base.Draw(gameTime);

 world.DrawLevel(gameTime, GameRef.SpriteBatch, player.Camera);
 player.Draw(gameTime, GameRef.SpriteBatch);

 GameRef.SpriteBatch.End();
}

I'm going to end this tutorial here. The plan was just to add in some place holder classes that will be
needed shortly. I encourage you to visit the news page of my site, XNA Game Programming
Adventures, for the latest news on my tutorials.

Good luck in your game programming adventures!

Jamie McMahon

http://xnagpa.net/news.html
http://xnagpa.net/news.html
http://xnagpa.net/news.html

