
XNA 4.0 RPG Tutorials

Part 15

Skills, Spells, and Talents

I'm writing these tutorials for the new XNA 4.0 framework. The tutorials will make more sense if they
are read in order. You can find the list of tutorials on the XNA 4.0 RPG tutorials page of my web site. I
will be making my version of the project available for download at the end of each tutorial. It will be
included on the page that links to the tutorials.

In this tutorial I'm going to get started with adding skills, talents, and spells to the game. I will be
adding in place holders that will be filled in as the game progresses. First I want to explain what skills,
spells, and talents are for.

Skills can be learned by any humanoid creature with intelligence. Spells are specific to characters that
have an understanding of magic. Talents are available to characters that are not magic using, basically
special moves like bashing an enemy with a shield, picking a lock, or disarming a trap.

Before I get to the game there is I thought I'd share with you that I use a lot. It is a pain to always be
entering all of the #region and #endregion directives into your code but it is good for organizational
purposes to use them. I made a snippet for adding them and added it to the snippet manager in Visual
Studio. So, I can just right click in the code editor and insert the snippet. Right click your game, select
Add and then New Item. Select the XML File entry and name it regions.snippet. This is the code.

<?xml version="1.0" encoding="utf-8" ?>
<CodeSnippets xmlns="http://schemas.microsoft.com/VisualStudio/2005/CodeSnippet">
 <CodeSnippet Format="1.0.0">
 <Header>
 <Title>
 Regions Snippet
 </Title>
 </Header>
 <Snippet>
 <Code Language="CSharp">
 <![CDATA[#region Field Region
 #endregion

 #region Property Region
 #endregion

 #region Constructor Region
 #endregion

 #region Method Region
 #endregion

 #region Virtual Method region
 #endregion
]]>
 </Code>
 </Snippet>
 </CodeSnippet>
</CodeSnippets>

http://xnagpa.net/xnarpg4tutorials.html

That is what a snippet file looks like for the snippet manager in Visual Studio. The Title tag is the title
of the snippet in the snippet manager, I named it Regions Snippet. I set the Language attribute of the
Code tag to CSharp as it is a C# snippet. In between the inner square brackets of CDATA is where you
place to code to insert. Now, from the File menu select Save As to save it to a different directory.
Navigate to the \Visual Studio 2010\Code Snippets\Visual C#\My Code Snippets\ folder and save
the file there. Now, right click the regions.snippet file in the solution explorer and select Remove.
When you want to use the snippet right click in the editor where you want to insert it, select Insert
Snippet, My Code Snippets, then Regions Snippet. You can make many more snippets. I've just
found this one incredibly useful when it comes to organizing code.

I want to add a static class to the RpgLibrary for handling game mechanics, like generating random
numbers, resolving skill use, etc. Right click the RpgLibrary, select Add and then Class. Name this
new class Mechanics. This is the code for that class.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using RpgLibrary.CharacterClasses;

namespace RpgLibrary
{
 public enum DieType { D4 = 4, D6 = 6, D8 = 8, D10 = 10, D12 = 12, D20 = 20, D100 = 100 }

 public static class Mechanics
 {
 #region Field Region

 static Random random = new Random();

 #endregion

 #region Property Region
 #endregion

 #region Constructor Region
 #endregion

 #region Method Region

 public static int RollDie(DieType die)
 {
 return random.Next(0, (int)die) + 1;
 }

 #endregion

 #region Virtual Method Region
 #endregion
 }
}

There is an enumeration, DieType, that has entries for different dice that are found in role playing
games. I have it at the name space level so you don't have to use a class name as well as the enum name
when referencing a DieType variable. I also give them values based on the type of die. For example,
the D8 member has a value of 8. So you don't have to use if or switch statements to get the upper limit
of the die. The value 8 is already associated with D8.

The class itself is static as the fields, properties, and methods are all meant to be static. You reference
the fields, properties and methods using the class name rather than an object of the class type. It is
common to group items that are similar together. A good example is the MathHelper class. There are a
number of useful math functions in the MathHelper class. There are going to be many methods and
properties that will be useful and I'm going to keep them all in the same place.

At the moment there is just one variable and one method. The variable is of type Random and will be
used for generating random numbers when they are needed. The static method, RollDie, will be called
when you want to roll a die. You pass in the type of die that you want to roll. The overload of the Next
method that I use takes two parameters. The first is the inclusive lower bound and the second is the
exclusive upper bound. That means the first number is included in the range of numbers to create and
the second is not. That is why I pass in zero for the first value and the die cast to an integer for the
second and add one to the result. So, for the D8 example the number generated will be between 0 and
7. Adding 1 to that gives the 1 to 8 range we are looking for.

I first want to add classes for skills, spells, and talents. Right click the RpgLibrary, select Add and
then New Folder. Name this new folder SkillClasses. Repeat the process twice and name the folders
SpellClasses and TalentClasses.

Now to each of those folders I want to add in a class. Right click each of the folders, select Add and
then Class. To the SkillClasses folder you want to add a class Skill, to the SpellClasses folder Spell,
and to the TalentClasses folder Talent. Right click each of the folders again, select Add and then
Class. To SkillClasses add a new class SkillData, to SpellClasses add a new class SpellData, and to
TalentClasses add a new class TalentData. One last time, right click each of the folders, select Add
and then Class. To SkillClasses you want to add SkillDataManager, to SpellClasses you want to add
SpellDataManager, and to TalentClasses you want to add TalentDataManager.

To the class and class data classes I added in regions and made the classes public. This is the code that I
added to the Skill and SkillData classes. I included an enum called DifficultyLevel in the Skill class.
This is how hard it is to use the skill. It can be very easy to perform a skill or it can be next to
impossible. The harder a skill is to perform the lower its value.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.SkillClasses
{
 public enum DifficultyLevel
 {
 Master = -50,
 Expert = -25,
 Improved = -10,
 Normal = 0,
 Easy = 25,
 }

 public class Skill
 {
 #region Field Region
 #endregion

 #region Property Region
 #endregion

 #region Constructor Region
 #endregion

 #region Method Region
 #endregion

 #region Virtual Method region
 #endregion
 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.SkillClasses
{
 public class SkillData
 {
 #region Field Region
 #endregion

 #region Property Region
 #endregion

 #region Constructor Region
 #endregion

 #region Method Region
 #endregion

 #region Virtual Method region
 #endregion
 }
}

I did that using the snippet I showed you at the start of the tutorial. Alternatively after adding the
regions for the Skill class you could copy and paste the region code. The code for the Spell, SpellData,
Talent and TalentData classes follows next.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.SpellClasses
{
 public class Spell
 {
 #region Field Region
 #endregion

 #region Property Region
 #endregion

 #region Constructor Region
 #endregion

 #region Method Region
 #endregion

 #region Virtual Method Region
 #endregion
 }
}

using System;

using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.SpellClasses
{
 public class SpellData
 {
 #region Field Region
 #endregion

 #region Property Region
 #endregion

 #region Constructor Region
 #endregion

 #region Method Region
 #endregion

 #region Virtual Method region
 #endregion
 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.TalentClasses
{
 public class Talent
 {
 #region Field Region
 #endregion

 #region Property Region
 #endregion

 #region Constructor Region
 #endregion

 #region Method Region
 #endregion

 #region Virtual Method Region
 #endregion
 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.TalentClasses
{
 public class TalentData
 {
 #region Field Region
 #endregion

 #region Property Region
 #endregion

 #region Constructor Region
 #endregion

 #region Method Region

 #endregion

 #region Virtual Method region
 #endregion
 }
}

To the manager classes I added a bit more code. I added in private readonly fields, public properties to
expose those fields, and in the constructor I create the fields. The code for my SkillDataManager,
SpellDataManager, and TalentDataManager classes follows next.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.SkillClasses
{
 public class SkillDataManager
 {
 #region Field Region

 readonly Dictionary<string, SkillData> skillData;

 #endregion

 #region Property Region

 public Dictionary<string, SkillData> SkillData
 {
 get { return skillData; }
 }

 #endregion

 #region Constructor Region

 public SkillDataManager()
 {
 skillData = new Dictionary<string, SkillData>();
 }

 #endregion

 #region Method Region
 #endregion

 #region Virtual Method region
 #endregion
 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.SpellClasses
{
 public class SpellDataManager
 {
 #region Field Region

 readonly Dictionary<string, SpellData> spellData;

 #endregion

 #region Property Region

 public Dictionary<string, SpellData> SpellData
 {
 get { return spellData; }
 }

 #endregion

 #region Constructor Region

 public SpellDataManager()
 {
 spellData = new Dictionary<string, SpellData>();
 }

 #endregion

 #region Method Region
 #endregion

 #region Virtual Method region
 #endregion
 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.TalentClasses
{
 public class TalentDataManager
 {
 #region Field Region

 readonly Dictionary<string, TalentData> talentData;

 #endregion

 #region Property Region

 public Dictionary<string, TalentData> TalentData
 {
 get { return talentData; }
 }

 #endregion

 #region Constructor Region

 public TalentDataManager()
 {
 talentData = new Dictionary<string, TalentData>();
 }

 #endregion

 #region Method Region
 #endregion

 #region Virtual Method region
 #endregion
 }
}

There will be modifiers to skills, spells, and talents. I say modifiers rather than bonuses because I feel
that bonuses are beneficial and there could be negative modifiers. I'm going to add a class to represent a

modifier. Right click the RpgLibrary project, select Add and then Class. Name the class Modifier.
This is the code.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary
{
 public struct Modifier
 {
 #region Field Region

 public int Amount;
 public int Duration;
 public TimeSpan TimeLeft;

 #endregion

 #region Constructor Region

 public Modifier(int amount)
 {
 Amount = amount;
 Duration = -1;
 TimeLeft = TimeSpan.Zero;
 }

 public Modifier(int amount, int duration)
 {
 Amount = amount;
 Duration = duration;
 TimeLeft = TimeSpan.FromSeconds(duration);
 }

 #endregion

 #region Method Region

 public void Update(TimeSpan elapsedTime)
 {
 if (Duration == -1)
 return;

 TimeLeft -= elapsedTime;
 if (TimeLeft.TotalMilliseconds < 0)
 {
 TimeLeft = TimeSpan.Zero;
 Amount = 0;
 }
 }

 #endregion

 #region Virtual Method Region
 #endregion
 }
}

The first thing you will notice is that I made this a structure rather than a class. The reason I did this is
that you will be adding and removing them frequently. That is one reason to use a structure rather than
a class.

There are three fields in the structure and they are all public. The first, Amount, is the amount of the
modifier. Duration is how long the modifier lasts, measured in seconds, and the TimeLeft tracks how

much time is left before the modifier expires. If you set the Duration to -1 the modifier lasts until it is
dispelled some how.

There are two constructors in the structure. The first takes the amount of the modifier as a parameter.
The second takes the amount and the duration. The first constructor sets the Amount field with the
value passed in, Duration to -1, and TimeLeft to TimeSpan.Zero. The second sets the Amount and
Duration fields to the values passed in. It then creates the TimeLeft field using the FromSeconds
method of the TimeSpan class.

The Update method takes as a parameter a TimeSpan object. I can't pass in a GameTime object
because this library has nothing to do with XNA. The GameTime class's ElapsedGameTime property
is a TimeSpan object so that can be passed to the Update method. I first check to see if Duration is -1
and if it is I exit the method as this modifier lasts until it is dispelled in some way. I then reduce the
TimeLeft field by the elapsedTime parameter. If the TotalMilliseconds is less than zero I set
TimeLeft to be TimeSpan.Zero and Amount to 0. If there is a modifier that has an amount of 0 it will
be removed from the list of modifiers.

I will be adding skills that have crafting formulas or recipes. I decided to go with the term recipe for
them in the end. Since they are related to skills I put them into the SkillClasses folder. Right click the
SkillClasses folder, select Add and then Class. Name this new class Recipe. I added in a structure to
this class as well. Add the following code to the Recipe class.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.SkillClasses
{
 public struct Reagents
 {
 #region Field Region

 public string ReagentName;
 public ushort AmountRequired;

 #endregion

 #region Property Region
 #endregion

 #region Constructor Region

 public Reagents(string reagent, ushort number)
 {
 ReagentName = reagent;
 AmountRequired = number;
 }

 #endregion

 #region Method Region
 #endregion
 }

 public class Recipe
 {
 #region Field Region

 public string Name;

 public Reagents[] Reagents;

 #endregion

 #region Property Region
 #endregion

 #region Constructor Region

 private Recipe()
 {
 }

 public Recipe(string name, params Reagents[] reagents)
 {
 Name = name;

 Reagents = new Reagents[reagents.Length];

 for (int i = 0; i < reagents.Length; i++)
 Reagents[i] = reagents[i];
 }

 #endregion

 #region Method Region
 #endregion

 #region Virtual Method region
 #endregion
 }
}

The structure Reagents is for the different reagents in a recipe. I use reagent to mean herbs and other
items that can be used to make potions, poisons, traps, etc. Since it is a structure I made the two fields
public. The first field, ReagentName, is the name of the reagent from the item classes. I will add that
class shortly. The AmountRequired field is the amount of that reagent required to craft the item and is
an unsigned short so its value can never be negative. The constructor takes two parameters. A string for
the name of the reagent and the amount of the reagent that is required.

I decided against creating a data class for recipes. That just seemed unnecessary as there isn't anything
difficult about recipes. The Recipe class has two public fields. The first is a string for the name of the
recipe, Name, and the second is an array of Reagents that holds the reagents required for the recipe.

There are two constructors for the class. The first a private constructor with no parameters to be used to
deserialize a recipe. The second takes a string parameter for the name and a params of Reagents. You
could just as easily use an array of Reagents or a List<Reagents> for it. It might be a good idea as you
could enforce that there be at least one Reagents for a recipe. The second constructor sets the Name
field to the name parameter. I then creates a new array of Reagents the same length as the reagents
passed in. I then copy the values from the reagents parameter to the Reagents field. Structures are
value types so you don't need to worry about unexpected side effects from changing values like you do
in a class that is a reference type.

You will also want a class to manage all of the recipes in the game. Right click the SkillClasses folder,
select Add and then Class. Name this new class RecipeManager. The code for that class follows next.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.SkillClasses
{
 public class RecipeManager
 {
 #region Field Region

 readonly Dictionary<string, Recipe> recipies;

 #endregion

 #region Property Region

 public Dictionary<string, Recipe> Recipies
 {
 get { return recipies; }
 }

 #endregion

 #region Constructor Region

 public RecipeManager()
 {
 recipies = new Dictionary<string, Recipe>();
 }

 #endregion

 #region Method Region
 #endregion

 #region Virtual Method region
 #endregion
 }
}

Nothing really new here. It is like all of the other manager classes I've created so far. There is a private
readonly field for the recipes. It is a Dictionary<string, Recipe>. There is a read only field to expose
the field. The constructor just creates a new instance of the dictionary.

The last thing I'm going to do is add in a classes to the ItemClasses folders for reagents. Right click the
ItemClasses folder, select Add and then Class. Name this new class ReagentData. This is the code for
that class.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.ItemClasses
{
 public class ReagentData
 {
 public string Name;
 public string Type;
 public int Price;
 public float Weight;

 public ReagentData()
 {
 }

 public override string ToString()
 {
 string toString = Name + ", ";

 toString += Type + ", ";
 toString += Price.ToString() + ", ";
 toString += Weight.ToString();

 return toString;
 }
 }
}

There are only four fields of interest to us from the BaseItem class. You want the name of the reagent,
the type of the reagent, the price of the reagent, and the weight of the reagent. You could probably even
get away with out the weight as for the inventory I won't be keeping track of weights. Weight will be of
importance to what a character is actually carrying. I will show you how I'm going to deal with the fact
that BaseItem requires zero or more strings for classes that are allowed to use the item in a moment.
The ToString method returns the a string with the name, type, price, and weight of the reagent.

Right click the ItemClasses folder again, select Add and then Class. Name this new class Reagent.
The code for that class follows next.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.ItemClasses
{
 public class Reagent : BaseItem
 {
 #region Field Region
 #endregion

 #region Property Region
 #endregion

 #region Constructor Region

 public Reagent(
 string reagentName,
 string reagentType,
 int price,
 float weight)
 : base(reagentName, reagentType, price, weight, null)
 {
 }

 #endregion

 #region Method Region
 #endregion

 #region Virtual Method region

 public override object Clone()
 {
 Reagent reagent = new Reagent(Name, Type, Price, Weight);

 return reagent;
 }

 #endregion

 }
}

There are no new fields or properties in this class and as you can see it doesn't have the params
parameter at the end. This is where the properties params allowing zero or more parameters comes
into play. I can just pass null in to the call to the base constructor. So, what is the purpose of inheriting
from BaseItem? Well, doing that you can still use polymorphism, the ability of a base class to act as an
inherited class at run time. When you get to inventory you can have a backpack of BaseItem instead of
all of the different item types for the items the player/party is carrying. In the Clone method you see
that I don't need to even pass in null as a parameter to the constructor. Just the values that I'm interested
in.

The last thing I'm going to do in this tutorial is update the ItemDataManager class. What I'm going to
do is add in a field for the ReagentData objects and a property to expose it. Change that class to the
following.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.ItemClasses
{
 public class ItemDataManager
 {
 #region Field Region

 readonly Dictionary<string, ArmorData> armorData = new Dictionary<string, ArmorData>();
 readonly Dictionary<string, ShieldData> shieldData = new Dictionary<string,
ShieldData>();
 readonly Dictionary<string, WeaponData> weaponData = new Dictionary<string,
WeaponData>();
 readonly Dictionary<string, ReagentData> reagentData = new Dictionary<string,
ReagentData>();
 #endregion

 #region Property Region

 public Dictionary<string, ArmorData> ArmorData
 {
 get { return armorData; }
 }

 public Dictionary<string, ShieldData> ShieldData
 {
 get { return shieldData; }
 }

 public Dictionary<string, WeaponData> WeaponData
 {
 get { return weaponData; }
 }

 public Dictionary<string, ReagentData> ReagentData
 {
 get { return reagentData; }
 }

 #endregion

 #region Constructor Region
 #endregion

 #region Method Region
 #endregion
 }
}

I'm going to end this tutorial here. The plan was just to add in some place holder classes that will be
needed shortly. I encourage you to visit the news page of my site, XNA Game Programming
Adventures, for the latest news on my tutorials.

Good luck in your game programming adventures!

Jamie McMahon

http://xnagpa.net/news.html
http://xnagpa.net/news.html
http://xnagpa.net/news.html

