XNA 4.0 RPG Tutorials

Part 14B

Back to Editors

I'm writing these tutorials for the new XNA 4.0 framework. The tutorials will make more sense if they
are read in order. You can find the list of tutorials on the XNA 4.0 RPG tutorials page of my web site. |
will be making my version of the project available for download at the end of each tutorial. It will be
included on the page that links to the tutorials.

This is the second part of tutorial 14 on adding more to the editors for the game. In this part I'm going
to be concentrating on the forms that hold the list of data items. Right click FormArmor and select
View Code. This is the code for FormArmor.

using
using
using
using
using
using
using
using
using

using
using

System

System.
System.
System.
System.
System.
System.
System.
System.

RpgLib
RpgLib

Collections.Generic;
ComponentModel;
Data;

Drawing;

Ling;

Text;

Windows.Forms;

1IH0))

rary.CharacterClasses;
rary.ItemClasses;

namespace RpgEditor

{

public partial class FormArmor : FormDetails

{

ffreg
#end

#reg
#end

ffreg

publ
{

t
#end

#reg

ion Field Region
region

ion Property Region
region

ion Constructor Region

ic FormArmor ()

InitializeComponent () ;

btnAdd.Click += new EventHandler (btnAdd Click);
btnEdit.Click += new EventHandler (btnEdit Click);
btnDelete.Click += new EventHandler (btnDelete Click) ;
region

ion Button Event Handler Region

void btnAdd Click (object sender, EventArgs e)

{

using (FormArmorDetails frmArmorDetails = new FormArmorDetails())
{

frmArmorDetails.ShowDialog () ;

http://xnagpa.net/xnarpg4tutorials.html

lbDetails.Items.RemoveAt (lbDetails.SelectedIndex) ;
itemManager.ArmorData.Remove (entity) ;

if (File.Exists (FormMain.ItemPath + @"\Armor\" + entity + ".xml"))
File.Delete (FormMain.ItemPath + Q@"\Armor\" + entity + ".xml");
}
#endregion
#region Method Region
public void FillListBox ()
{ lbDetails.Items.Clear () ;
foreach (string s in FormDetails.ItemManager.ArmorData.Keys)
lbDetails.Items.Add (FormDetails.ItemManager.ArmorDatal[s]) ;

}

private void AddArmor (ArmorData armorData)

{

if (FormDetails.ItemManager.ArmorData.ContainsKey (armorData.Name))
{
DialogResult result = MessageBox.Show (
armorData.Name + " already exists. Overwrite it?",

"Existing armor",
MessageBoxButtons.YesNo) ;

if (result == DialogResult.No)
return;
itemManager.ArmorData[armorData.Name] = armorData;
FillListBox () ;
return;

}

itemManager.ArmorData.Add (armorData.Name, armorData);
lbDetails.Items.Add (armorData) ;
}

#endregion

The code should look familiar, it is pretty much the same code as FormClasses. It just works with
armor instead of entity data. There is the using statement for the System.IO name space. Event
handlers for the click event of the buttons are wired in the constructors. The Click event handler of
btnAdd creates a form in a using block. I show the form. If the Armor property of the form is not null
I call the AddArmor method passing in the Armor property. The Click event handler of btnEdit
checks to see if the SelectedItem of IbDetails is not null. It parses the string to get the name of the
armor. It then gets the ArmorData for the selected item and sets newData to null. In a using statement
a form is created. The Armor property of the form is set to the ArmorData of SelectedItem. I call the
ShowDialog method to display the form. If the Armor property of form is null I exit the method. If the
name is the same as before I assign the entry in the item manager to be the new armor, call FillListBox
to update the armor and exit the method. I then set newData to be the Armor property of the form. The
name of the armor changed so I display a message box asking if the new armor should be added. If the
result is no I exit the method. If there is armor with that name already I display a message box and exit.
If there wasn't I add the new armor to the list box and the item manager. The Click event handler for
btnDelete checks to make sure that the SelectedItem of the list box is not null. It parses the selected
item and displays a message box asking if the armor should be deleted. If the result of the message box

is Yes I remove the armor from the list box and I remove if from the item manager as well. I then delete
the file, if it exists.

Right click FormShield now and select View Code. The code for FormShield is almost a carbon copy
of FormArmor. In fact, I copied and pasted the code. I then renamed Armor to Shield and then armor
to shield. This is the code for FormShield.

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Windows.Forms;

using System.IO;

using RpgLibrary.CharacterClasses;
using RpgLibrary.ItemClasses;

namespace RpgEditor
{
public partial class FormShield : FormDetails
{
#region Field Region
ffendregion

#region Property Region
#endregion

#region Constructor Region

public FormShield ()
{

InitializeComponent () ;

btnAdd.Click += new EventHandler (btnAdd Click);

btnEdit.Click += new EventHandler (btnEdit Click);

btnDelete.Click += new EventHandler (btnDelete Click) ;
}

#endregion
#region Button Event Handler Region

void btnAdd Click (object sender, EventArgs e)
{
using (FormShieldDetails frmShieldDetails = new FormShieldDetails())
{
frmShieldDetails.ShowDialog() ;

if (frmShieldDetails.Shield != null)
{

AddShield (frmShieldDetails.Shield) ;
}

}

void btnEdit Click(object sender, EventArgs e)
{
if (lbDetails.SelectedItem != null)
{
string detail = lbDetails.SelectedItem.ToString();
string[] parts = detail.Split(',"):;
string entity = parts[0].Trim() ;

ShieldbData data = itemManager.ShieldDatalentity];

As you can see, other than variable and class names, the code is the same. The code for FormWeapon
is the same again. Right click FormWeapon and select View Code. This is the code for that form.

string[] parts = detail.Split(',");
string entity = parts[0].Trim() ;

DialogResult result = MessageBox.Show (
"Are you sure you want to delete " + entity + "2",
"Delete",

MessageBoxButtons.YesNo) ;
if (result == DialogResult.Yes)

lbDetails.Items.RemoveAt (1bDetails.SelectedIndex) ;
itemManager.WeaponData.Remove (entity) ;

if (File.Exists (FormMain.ItemPath + @"\Weapon\" + entity + ".xml"))
File.Delete (FormMain.ItemPath + @"\Weapon\" + entity + ".xml");

}
#endregion
#region Method Region

public void FillListBox ()

{
lbDetails.Items.Clear();

foreach (string s in FormDetails.ItemManager.WeaponData.Keys)
lbDetails.Items.Add (FormDetails.ItemManager.WeaponDatal[s]) ;

}

private void AddWeapon (WeaponData weaponData)
{
if (FormDetails.ItemManager.WeaponData.ContainsKey (weaponData.Name))
{
DialogResult result = MessageBox.Show (
weaponData.Name + " already exists. Overwrite it?",
"Existing weapon",
MessageBoxButtons.YesNo) ;

if (result == DialogResult.No)
return;
itemManager.WeaponData [weaponData.Name] = weaponData;
FillListBox () ;
return;

}

itemManager.WeaponData.Add (weaponData.Name, weaponData) ;
lbDetails.Items.Add (weaponData) ;
}

#endregion

It might be a pain in the ass to have to do this every time but I'm going to ask the user if they are sure
they want to exit before closing the editor. If they choose the No option then closing the form will be
cancelled. I will wire a handler for the FormClosing event in the constructor of FormMain and handle
the event. Right click FormMain and select View Code. Change the constructor to the following and
add in the following handler.

public FormMain ()

{

InitializeComponent () ;

this.FormClosing += new FormClosingEventHandler (FormMain FormClosing) ;

newGameToolStripMenultem.Click += new EventHandler (newGameToolStripMenulItem Click);
openGameToolStripMenultem.Click += new EventHandler (openGameToolStripMenultem Click);
saveGameToolStripMenultem.Click += new EventHandler (saveGameToolStripMenultem Click);
exitToolStripMenulItem.Click += new EventHandler (exitToolStripMenuItem Click);

classesToolStripMenultem.Click += new EventHandler (classesToolStripMenultem Click);
armorToolStripMenultem.Click += new EventHandler (armorToolStripMenultem Click);
shieldToolStripMenultem.Click += new EventHandler (shieldToolStripMenultem Click);
weaponToolStripMenultem.Click += new EventHandler (weaponToolStripMenultem Click);

}

void FormMain FormClosing(object sender, FormClosingEventArgs e)
{
DialogResult result = MessageBox.Show (
"Unsaved changes will be lost. Are you sure you want to exit?",
"Exit?",
MessageBoxButtons.YesNo,
MessageBoxIcon.Warning) ;

if (result == DialogResult.No)
e.Cancel = true;

That gets the editors up and going. With these you have different classes for the player character, and
non-player characters, and some basic items. We still don't have any data to work with though and there
is something that I need to explain, the formula fields in the EntityData class. I don't plan on using
complicated formulae for health, mana, or stamina. What I plan to do is have a three part formula, with
each part separated with a |. The first part is the base for the attribute, the second is the basic attribute to
add to the base, and the third is a random amount that will be added with each level. So, if you had 20|
CON|12, the formula would be 20 + CON + 1-12 for first level and 1-12 more points each level gained
after the first. I will be, eventually, be adding in modifiers to health, mana, and stamina. The reason I
say modifiers rather than bonuses is that bonuses, to me, signifies positives and there could be penalties
from injuries or cursed items. If a class can not have the attribute, fighters don't have mana, you use 0|0
0 as the formula.

I was torn about whether or not to go over adding in how I came up with the data values I used or not.
In the end I decided that it was worth it. I will be using a 100 point system for the basic character
attributes with 10 being an “average” person. As you've seen I decided to go with Fighters, Rogues,
Priests, and Wizards as character classes for the player character. There will be other character classes
that are for non-player characters. Fighters are strong, hardy characters, and are not gifted magically.
Rogues are fair fighters but very perceptive and dexterous. Priests are not bad fighters and have access
to healing magic and a few offensive spells. Wizards, while not the strongest physically, command
powerful magics that make them dreaded foes. This is the data I used for each of the character classes.

Character Classes

Class Name STR | DEX | CUN | WIL MAG CON Health Stamina Magic
Formula Formula Formula
Fighter 14 12 10 12 10 12 20|CONJ|12 12|WIL|12 010/0
Rogue 10 14 14 12 10 10 10|CONJ10 10|WIL|10 00|0|
Priest 12 10 12 12 12 12 12|CONJ12 0l0j0 10|WIL|10
Wizard 10 10 12 14 14 10 10|CONJ10 0[0j0| 20/WILJ|12

What I suggest is you run the editor and create a game and data, to see the editor in action and we
really need data to work with. Launch the editor and then create a new game. Select a directory other
than the EyesOfTheDragonContent folder. | named my game: Eyes of the Dragon. For the
description I put something like: Tutorial game for creating a RPG with XNA 4.0. Click Classes to
bring up the Classes form. Add each of the classes above. My data is in the project file for this tutorial,

or if you just want the data: http://xnagpa.net/xna4/downloads/gamedatal4.zip.

I'm now going to go into creating a few items in this tutorial. I'm going to set up a few tables with the
values I used. If you're not interested in doing them on your own they are all in the file I linked to in the
last paragraph. These are just suggest values.

Armor

Name Type Price Weight Location Defense Defense Allowed Classes
Value Modifier

Leather Gloves Gloves | 10 1 Hands 5 0 Fighter
Rogue
Priest

Leather Boots Boots |10 1 Feet 5 0 Fighter
Rogue
Priest
Wizard

Leather Armor Armor |20 8 Body 10 0 Fighter
Rogue
Priest

Studded Leather Gloves |Gloves |15 2 Hands 7 0 Fighter
Rogue
Priest

Studded Leather Boots | Boots |15 2 Feet 7 0 Fighter
Rogue
Priest

Studded Leather Armor | Armor |30 10 Body 14 0 Fighter
Rogue
Priest

Leather Helm Helm |10 2 Head 5 0 Fighter
Rogue
Priest

Studded Leather Helm |Helm |15 3 Head 7 0 Fighter
Rogue
Priest

Chain Mail Boots Boots |30 4 Feet 10 0 Fighter
Priest

Chain Mail Gloves Gloves |30 4 Hands 10 0 Fighter
Priest

Chain Mail Armor |80 25 Body 20 0 Fighter
Priest

Chain Mail Helm Helm |40 8 Head 10 0 Fighter
Priest

Light Robes Robes |10 5 Body 2 0 Wizard

Medium Robes Robes |20 8 Body 5 0 Wizard

http://xnagpa.net/xna4/downloads/gamedata14.zip

Shields

Name Type Price Weight Defense Defense Allowed Classes
Value Modifier
Small Wooden Shield Small 5 4 5 0 Fighter
Rogue
Priest
Medium Wooden Shield | Medium 10 8 8 0 Fighter
Priest
Large Wooden Shield Large 20 12 15 0 Fighter
Small Metal Shield Small 10 8 8 0 Fighter
Rogue
Priest
Medium Metal Shield Medium 40 12 12 0 Fighter
Priest
Large Metal Shield Large 80 16 20 0 Fighter
Large Kite Shield Large 100 18 25 0 Fighter
Heavy Tower Shield Large 125 20 30 0 Fighter
Weapons
Name Type Price | Weight | Hands Attack Attack | Damage | Damage Allowed Classes
Value Modifier Value | Modifier
Club Crushing 8 10 One 4 0 6 0 Fighter
Rogue
Priest
Mace Crushing 16 12 One 6 0 8 0 Fighter
Rogue
Priest
Flail Crushing 20 14 One 8 0 10 0 Fighter
Priest
Apprentice Staff Magic 20 5 Two 6 0 6 0 Wizard
Acolyte Staff Magic 40 8 Two 8 0 8 0 Wizard
Dagger Piercing 10 3 One 4 0 6 0 Fighter
Rogue
Short Sword Piercing 20 10 One 6 0 8 0 Fighter
Rogue
Long Sword Slashing 40 15 One 10 0 12 0 Fighter
Rogue
Broad Sword Slashing 60 18 One 12 0 14 0 Fighter
Rogue
Great Sword Slashing 80 25 Two 12 0 16 0 Fighter
Halberd Slashing 100 30 Two 16 0 20 0 Fighter
War Axe Slashing 20 15 One 10 0 10 0 Fighter
Rogue
Battle Axe Slashing 50 25 Two 12 0 16 0 Fighter

I'm going to end the second part of the tutorial here. I'd like to try and keep the tutorials to a reasonable
length. I encourage you to visit the news page of my site, XNA Game Programming Adventures, for the
latest news on my tutorials.

Good luck in your game programming adventures!

Jamie McMahon

http://xnagpa.net/news.html
http://xnagpa.net/news.html

