XNA 4.0 RPG Tutorials

Part 14A

Back to Editors

I'm writing these tutorials for the new XNA 4.0 framework. The tutorials will make more sense if they
are read in order. You can find the list of tutorials on the XNA 4.0 RPG tutorials page of my web site. |
will be making my version of the project available for download at the end of each tutorial. It will be
included on the page that links to the tutorials.

Before we go much further you will need data to work with. There is only so much you can do with out
data. When we create a character in the game, the player character, non-player character, or monster,
you need information about the character. You are going to want to know what weapon a character is
holding. What kind of skill do they have with that weapon. So, we need to work on the editors.

Open up the project in Visual C# from last time. Right click on the RpgEditor project and select the
Set As StartUp Project option. To make parsing the data in the list boxes a little easier I want to
change the ToString method of the EntityData class. | want to remove all of the parts that contained
an =. This is the new ToString method for the EntityData class.

public override string ToString ()

{
string toString = EntityName + ", ";
toString += Strength.ToString() + ", ";
toString += Dexterity.ToString() + ", ";
toString += Cunning.ToString() + ", ";
toString += Willpower.ToString() + ", ";
toString += Magic.ToString() + ", ";
toString += Constitution.ToString() + ", ";
toString += HealthFormula + ", ";
toString += StaminaFormula + ", ";
toString += MagicFormula;

return toString;

You also need to add in overrides of the ToString methods to the item data classes: WeaponData,
ArmorData and ShieldData. I also included a constructor with no parameters, just to be sure that there
will be no problem serializing the data. This is the updated code for those three classes.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace RpgLibrary.ItemClasses
{
public class ArmorData
{
public string Name;
public string Type;
public int Price;

http://xnagpa.net/xnarpg4tutorials.html

using System.Ling;
using System.Text;

namespace RpglLibrary.ItemClasses
{
public class WeaponData
{
public string Name;
public string Type;
public int Price;
public float Weight;
public bool Equipped;
public Hands NumberHands;
public int AttackValue;
public int AttackModifier;
public int DamageValue;
public int DamageModifier;
public string[] AllowableClasses;

public WeaponData ()
{
}

public override string ToString ()
{

"

string toString = Name + ", ";
toString += Type + ", ";

toString += Price.ToString() + ", ";
toString += Weight.ToString() + ", ";
toString += NumberHands.ToString() + ",
toString += AttackValue.ToString() + ",
toString += AttackModifier.ToString() + ", ";
toString += DamageValue.ToString() + ", ";
toString += DamageModifier.ToString();

"

"

foreach (string s in AllowableClasses)
toString += ", " + s;

return toString;

You've seen the same code when I added in the overrides to the ToString methods of the other item
classes. Now everything is in place to start adding in logic to the forms.

I'm planning on making life a little easier when it comes to forms being closed. What I'm going to do is
disable the close button on the forms for entering in specific data. Right click FormEntityData in the
solution explorer and select the View Designer option. Click on the title bar of the form and set the
ControlBox property to False. Also, set the StartPosition property to CenterParent. I'm going to add
in a little code to cancel the form being closed if it isn't done by hitting the OK or Cancel buttons. Right
click FormEntityData and select View Code. Change the code for that form to the following.

using System;

using System.Collections.Generic;
using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Windows.Forms;

using RpgLibrary.CharacterClasses;

namespace RpgEditor

{

What the new code is doing is first wiring an event handler for the FormClosing event. In that handler
I check to see if the reason for the form closing is UserClosing. That means the form is being close by
the X, hitting ALT+F4, or code calling the Close method. If it is, I cancel the event. Then, before
calling the Close method at the end of the click event handlers for the buttons I remove the subscription
to the FormClosing event.

Now, I'm going to finish coding FormClasses. Right click FormClasses in the solution explorer and
select View Code. I'm going to first add the logic for the Delete button. Change the btnDelete Click
method of FormClasses to the following. Also, add the following using statement with the other using
statements at the beginning of the code.

using System.IO;

void btnDelete Click(object sender, EventArgs e)
{
if (lbDetails.SelectedItem != null)

{
string detail = (string)lbDetails.SelectedItem;
string[] parts = detail.Split(',"'");
string entity = parts[0].Trim() ;

DialogResult result = MessageBox.Show (
"Are you sure you want to delete " + entity + "?",
"Delete",
MessageBoxButtons.YesNo) ;

if (result == DialogResult.Yes)

{
lbDetails.Items.RemoveAt (lbDetails.SelectedIndex) ;
entityDataManager.EntityData.Remove (entity) ;

if (File.Exists (FormMain.ClassPath + @"\" + entity + ".xml"))
File.Delete (FormMain.ClassPath + @"\" + entity + ".xml");

You first want to check to see that an item in the list box is selected by check to be sure it is not null. I
then get the selected item as a string. Strings are separated by a comma so I call the Split method of the
string class passing in a comma. The first string in the array is the name so I call the Trim method on
parts[0] to remove any white space. | display a message box asking to make sure that you want to
delete the entity and capture the result. If the result was yes I remove the entry form the list box, I then
remove it from the entity data manager. I then check to see if a file for the entity exists, if it does I
delete it.

To edit an item you follow somewhat the same process. Change the btnEdit_Click method to the
following.

void btnEdit Click(object sender, EventArgs e)
{
if (lbDetails.SelectedItem != null)
{
string detail = (string)lbDetails.SelectedItem.ToString/() ;
string[] parts = detail.Split(',"'"):;
string entity = parts[0].Trim() ;
EntityData data = entityDataManager.EntityDatal[entity];
EntityData newData = null;

using (FormEntityData frmEntityData = new FormEntityData())

frmEntityData.EntityData = data;
frmEntityData.ShowDialog() ;

if (frmEntityData.EntityData == null)
return;
if (frmEntityData.EntityData.EntityName == entity)
{
entityDataManager.EntityData[entity] = frmEntityData.EntityData;
FillListBox () ;
return;

}

newData = frmEntityData.EntityData;
}

DialogResult result = MessageBox.Show (
"Name has changed. Do you want to add a new entry?",
"New Entry",
MessageBoxButtons.YesNo) ;

if (result == DialogResult.No)
return;

if (entityDataManager.EntityData.ContainsKey (newData.EntityName))

{
MessageBox.Show ("Entry already exists. Use Edit to modify the entry.");
return;

}

lbDetails.Items.Add (newData) ;
entityDataManager.EntityData.Add (newData.EntityName, newData) ;

}

You first want to check to see that an item in the list box is selected by check to be sure it is not null. I
then get the selected item as a string. Strings are separated by a comma so I call the Split method of the
string class passing in a comma. The first string in the array is the name so I call the Trim method on
parts[0] to remove any white space. | then get the EntityData for the selected entity and set a local
variable to hold the new data of the entity. That is followed by a using statement that I use to create the
FormEntityData form for editing EntityData objects. I set the EntityData property of the form to be
the currently selected object and then call the ShowDialog method. If the EntityData property is null
after the ShowDialog method was called then the Cancel button was clicked and I exit the method. If
the EntityName proeprty of the EntityData object is the same as the entity variable then the name of
the EntityData object didn't change and it is safe to assign it to the entry at entity in the entity data
manager. | then call the FillListBox method to update the list box. I then return out of the method.
Before leaving the using statement for the form I set the newData variable to be the EntityData
property of the form. I display a message box asking if the user wants to add a new entry for the
EntityData object. If the result is No I exit the method. If there exists an entry in the entity data
manager already I display a message box and exit the method. I finally add the new object to the list
box and add the entry to the entity data manager.

The logic for the other forms that display the list is the same as FormClasses. Some of the logic for the
forms creating and editing individual objects is similar to FormEntityData. The implementation is a
little different but that is because the data on the forms is a little different. Before you can work on the
forms that hold the list of objects you need to do the logic for the forms for creating new objects and
editing existing objects.

Let's get started with FormArmorDetails. First right click it in the solution explorer and select View
Designer. Click on the title bar. Set the ControlBox property to False and the StartPosition property
to CenterParent. Right click it again and select View Code. This is the code for that form.

if (!int.TryParse (mtbDefenseModifier.Text, out defMod))

{
MessageBox.Show ("Defense valule must be an interger value.");
return;

}
List<string> allowedClasses = new List<string>();

foreach (object o in lbAllowedClasses.Items)
allowedClasses.Add(o.ToString()) ;

armor = new ArmorData();

armor.Name = tbName.Text;

armor.Type = tbType.Text;

armor.Price = price;

armor.Weight = weight;

armor.ArmorLocation = (ArmorlLocation)cboArmorLocation.SelectedIndex;
armor.DefenseValue = defVval;

armor.DefenseModifier = defMod;

armor.AllowableClasses = allowedClasses.ToArray () ;

this.FormClosing -= FormArmorDetails FormClosing;
this.Close () ;

}

void btnCancel Click(object sender, EventArgs e)

{
armor = null;
this.FormClosing -= FormArmorDetails FormClosing;
this.Close () ;

}

#endregion

}

This code should look a little familiar from FormEntityData. Some of it is new though. There are
using statements to bring classes for our RpgLibrary into scope. There is a field of type ArmorData
to hold the armor created or edited. There is a public property to expose the ArmorData field as well.

The constructor wires a few event handlers. There are handlers for the Load event of the form and the
FormClosing event, like in FormEntityData. There are handlers for the Click events of btnOK and

btnCancel as well, again just like FormEntityData. There are two new handlers though. They are for
btnMoveAllowed and btnRemoveAllowed. When btnMoveAllowed is clicked the currently selected
item in IbClasses will be moved to IbAllowedClasses. The other button, btnRemoveAllowed, works

in reverse. It will move the currently selected item in IbAllowedClasses back to IbClasses.

In the Load event handler for the form I loop through all if the keys in the EntityDataManager. The
keys are then added to the items in IbClasses. I also fill the combo box with the items from the enum
ArmorLocation. I use the GetValues method to get the values. I also set the SelectedIndex of the
combo box to be the first item, at index 0. It then checks to see if the armor field is not null, meaning
the form is being opened to edit an armor. If it is not I set the values of the controls on the form. The
text boxes have their Text properties set to the appropriate field of the ArmorData field. The masked
text boxes have their Text properties set to the appropriate value using the ToString method. For the
nudWeight [set the Value property to the Weight field by casting it to a decimal. For the combo box I
set the SelectedIndex property to the ArmorLocation field, casting it to an integer. The list boxes
work a little differently. I loop through all of the classes in the array AllowableClasses. If the Items
collection of IbClasses contains the value it is removed. If you try and remove a value that isn't in the
collection you will generate an exception. I then add the value to the Items collection of the second list

box, IbAllowedClasses. The other two forms, FormShieldDetails and FormWeaponDetails, have
basically the same code for their Load events, just appropriate to the item they are for.

The event handler for the FormClosing event is a duplicate from FormEntityData. It just cancels
closing the form if the close reason is UserClosing. It was subscribed to in the constructor and will be
unsubscribed from if creating the ArmorData is successful in the Click event of btnOK and in the
Click event of btnCancel.

The code for the Click event handler of btnMoveAllowed handles moving the currently selected item
from IbClasses to IbAllowedClasses. It checks to see if the SelectedItem property of IbClasses is not
null. If it isn't then an item is selected and should be moved. I add the SelectedItem from IbClasses to
IbAllowedClasses. I then use the RemoveAt method of the Items collection of IbClasses to remove
the SelectedIndex of IbClasses.

The code for the Click event handler of btnRemoveAllowed works in reverse. It checks to see if the
SelectedItem property of IbAllowedClasses is not null. If it has a value the SelectedItem is added to
IbClasses and removed from IbAllowedClasses.

The event handler for the Click event of btnOK does a little validation on the form. It checks to make
sure that the Text property tbName has a value. It then uses the TryParse method of the integer class
to make sure that the masked text boxes' Text property have integer values. Creating the array of
allowed classes takes a little work. I have a local variable of List<string> that will hold all of the items
in IbAllowedClasses. Items in a list box's Items collection are stored as objects so there is a foreach
loop looping through all of the objects in Items. I add them to the allowedClasses using the ToString
method. I then create a new ArmorData object and assign the fields. I unsubscribe the FormClosing
event and close the form.

The event handler for btnCancel's Click event works just like on FormEntityData. I set the field to
null, unsubscribe the event and close the form.

The other two details forms, FormShieldDetails and FormWeaponDetails, have the same form as
FormArmorDetails. The difference is they work with shields and weapons respectively. I don't see a
reason to go over the code in depth like this form. Right click FormShieldDetails and select View
Code. This is the code for FormShieldDetails.

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Windows.Forms;

using RpgLibrary.ItemClasses;

namespace RpgEditor

{ public partial class FormShieldDetails : Form
{ #region Field Region

ShieldData shield;

#endregion

Nothing really new there, if anything it is a little simpler than Form ArmorDetails as you don't have to
worry about the location of a shield. FormWeaponDetails is basically the same as well. It just works

with a weapon rather than armor. Right click FormWeaponDetails and select View Code. This is the
code.

if (!int.TryParse (mtbAttackValue.Text, out attVal))

MessageBox.Show ("Attack value must be an interger value.");
return;

if (!int.TryParse (mtbAttackModifier.Text, out attMod))

MessageBox.Show ("Attack value must be an interger value.");
return;

if (!int.TryParse (mtbDamageValue.Text, out damVal))

MessageBox.Show ("Damage value must be an interger value."):;
return;

if (!int.TryParse (mtbDamageModifier.Text, out damMod))

MessageBox.Show ("Damage value must be an interger value.");
return;

}
List<string> allowedClasses = new List<string>():;

foreach (object o in 1bAllowedClasses.Items)
allowedClasses.Add(o.ToString()) ;

weapon = new WeaponData () ;

weapon.Name = tbName.Text;

weapon.Type = tbType.Text;

weapon.Price = price;

weapon.Weight = weight;

weapon.AttackValue = attval;

weapon.AttackModifier = attMod;

weapon.DamageValue = damVal;

weapon.DamageModifier = damMod;
weapon.AllowableClasses = allowedClasses.ToArray();

this.FormClosing -= FormWeaponDetails FormClosing;
this.Close () ;
}

void btnCancel Click(object sender, EventArgs e)

{
weapon = null;
this.FormClosing -= FormWeaponDetails FormClosing;
this.Close () ;

}

#endregion

I don't think there is anything that needs explaining. The only difference is a few variable names and
instead of using ArmorLocation to fill the combo box use Hands.

I'm going to end this tutorial here and add a B part to it. Instead of posting the A part before finishing
the B part, I'm going to finish the B part and post them both. I encourage you to visit the news page of
my site, XNA Game Programming Adventures, for the latest news on my tutorials.

Good luck in your game programming adventures!

http://xnagpa.net/news.html
http://xnagpa.net/news.html

Jamie McMahon

