
XNA 4.0 RPG Tutorials

Part 13

List Box Control and Load Game Screen

I'm writing these tutorials for the new XNA 4.0 framework. The tutorials will make more sense if they
are read in order. You can find the list of tutorials on the XNA 4.0 RPG tutorials page of my web site. I
will be making my version of the project available for download at the end of each tutorial. It will be
included on the page that links to the tutorials.

In going to be adding a List Box control in this tutorial and . I will be starting with the List Box
control. One problem with adding a List Box is that I'm using the up and down arrow keys or the left
thumb stick or direction pad on the control to navigate between controls. You would expect to navigate
the items in a List Box the same way. The way that I'm going to handle this is having a control that can
be selected activate the List Box. If the user presses the user presses enter or the A button to accept a
selection control leaves, the same with pressing the escape key or B button. You are going to need a
graphic for the List Box. I made a rather simple one, for now. You can download it from my web site
at: http://xnagpa.net/xna4/downloads/listbox.zip.

Open your solution from last time. Unzip the file then right click the GUI folder in the
EyesOfTheDragonContent project and select Add Existing Item. Select the listBoxImage.png
image. Open the code for the Control class. I want to make the HasFocus property to be a virtual
property. Change the HasFocus property to the following.

public virtual bool HasFocus
{
 get { return hasFocus; }
 set { hasFocus = value; }
}

Now, right click the Controls folder in the XRpgLibrary project, select Add and then Class. Name
this new class ListBox. This is the code for the ListBox class.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;

namespace XRpgLibrary.Controls
{
 public class ListBox : Control
 {
 #region Event Region

 public event EventHandler SelectionChanged;
 public event EventHandler Enter;
 public event EventHandler Leave;

http://xnagpa.net/xnarpg4tutorials.html
http://xnagpa.net/xna4/downloads/listbox.zip

 #endregion

 #region Field Region

 List<string> items = new List<string>();

 int startItem;
 int lineCount;

 Texture2D image;
 Texture2D cursor;

 Color selectedColor = Color.Red;
 int selectedItem;

 #endregion

 #region Property Region

 public Color SelectedColor
 {
 get { return selectedColor; }
 set { selectedColor = value; }
 }

 public int SelectedIndex
 {
 get { return selectedItem; }
 set { selectedItem = (int)MathHelper.Clamp(value, 0f, items.Count); }
 }

 public string SelectedItem
 {
 get { return Items[selectedItem]; }
 }

 public List<string> Items
 {
 get { return items; }
 }

 public override bool HasFocus
 {
 get { return hasFocus; }
 set
 {
 hasFocus = value;

 if (hasFocus)
 OnEnter(null);
 else
 OnLeave(null);
 }
 }
 #endregion

 #region Constructor Region

 public ListBox(Texture2D background, Texture2D cursor)
 : base()
 {
 hasFocus = false;
 tabStop = false;

 this.image = background;
 this.image = cursor;

 this.Size = new Vector2(image.Width, image.Height);

 lineCount = image.Height / SpriteFont.LineSpacing;
 startItem = 0;
 Color = Color.Black;
 }

 #endregion

 #region Abstract Method Region

 public override void Update(GameTime gameTime)
 {
 }

 public override void Draw(SpriteBatch spriteBatch)
 {
 spriteBatch.Draw(image, Position, Color.White);

 for (int i = 0; i < lineCount; i++)
 {
 if (startItem + i >= items.Count)
 break;

 if (startItem + i == selectedItem)
 {
 spriteBatch.DrawString(
 SpriteFont,
 items[startItem + i],
 new Vector2(Position.X, Position.Y + i * SpriteFont.LineSpacing),
 SelectedColor);
 spriteBatch.Draw(
 cursor,
 new Vector2(
 Position.X - (cursor.Width + 2),
 Position.Y + i * SpriteFont.LineSpacing + 5),
 Color.White);
 }
 else
 spriteBatch.DrawString(
 SpriteFont,
 items[startItem + i],
 new Vector2(Position.X, 2 + Position.Y + i * SpriteFont.LineSpacing),
 Color);
 }
 }

 public override void HandleInput(PlayerIndex playerIndex)
 {
 if (!HasFocus)
 return;

 if (InputHandler.KeyReleased(Keys.Down) ||
 InputHandler.ButtonReleased(Buttons.LeftThumbstickDown, playerIndex))
 {
 if (selectedItem < items.Count - 1)
 {
 selectedItem++;
 if (selectedItem >= startItem + lineCount)
 startItem = selectedItem - lineCount + 1;
 OnSelectionChanged(null);
 }
 }
 else if (InputHandler.KeyReleased(Keys.Up) ||
 InputHandler.ButtonReleased(Buttons.LeftThumbstickUp, playerIndex))
 {
 if (selectedItem > 0)
 {
 selectedItem--;
 if (selectedItem < startItem)
 startItem = selectedItem;
 OnSelectionChanged(null);

 }
 }

 if (InputHandler.KeyReleased(Keys.Enter) ||
 InputHandler.ButtonReleased(Buttons.A, playerIndex))
 {
 HasFocus = false;
 OnSelected(null);
 }

 if (InputHandler.KeyReleased(Keys.Escape) ||
 InputHandler.ButtonReleased(Buttons.B, playerIndex))
 {
 HasFocus = false;
 }
 }

 #endregion

 #region Method Region

 protected virtual void OnSelectionChanged(EventArgs e)
 {
 if (SelectionChanged != null)
 SelectionChanged(this, e);
 }

 protected virtual void OnEnter(EventArgs e)
 {
 if (Enter != null)
 Enter(this, e);
 }

 protected virtual void OnLeave(EventArgs e)
 {
 if (Leave != null)
 Leave(this, e);
 }

 #endregion
 }
}

There are using statements for a few of the XNA framework name spaces like the other controls. The
class inherits from Control so it can be added to the ControlManager class. I added three events to the
List Box. The first event, SelectionChanged, will be fired if user changes the selection by scrolling up
or down. The Enter event is fired if the ListBox receives focus and the Leave event is fired if the List
Box loses focus.

There are several new fields in the List Box class. Like the Left Right Selector, there is a List<string>
for the items in the ListBox. There are then two integer fields startItem and lineCount. The
lineCount field holds how many lines to draw in the List Box. The startItem field is where to start
drawing items from, the top item in the List Box. The image field is a Texture2D for the List Box. The
cursor field is also a Texture2D and will be drawn with the selected item. The selectedColor field is
what color to draw the selected item in and the selectedIndex field is the index of the currently selected
item.

There are properties to expose some of the new fields. The SelectedColor property is a read and write
property and allows for changing the selectedColor field. The SelectedIndex property returns the
selectedIndex field for the get part and in the set part clamps the value with in the range of items in the
List Box. The SelectedItem property returns the item from the List Box at the SelectedIndex. The

Items property returns the items field. The HasFocus property is a little more interesting than the
others. The get part returns the hasFocus field of the parent class, Control. It is the set part that is more
interesting. It sets the hasFocus field to the value passed in. Then I check to see what the value of
hasFocus is. If it is true the List Box just received focus and I call the OnEnter method passing in null
for the EventArg. Otherwise the List Box has lost focus and I call the OnLeave method again passing
in null for the EventArg.

The constructor of the List Box class takes a Texture2D for the background image of the List Box and
a Texture2D for the cursor. I set the hasFocus and tabStop fields to false. It is important not to have
the List Box as a tabStop or you will break the ControlManager and the List Box won't work as
expected. I set the image field to the Texture2D passed in as well as the cursor field. I then set the
Size of the List Box to be the width and height of the image. To determine how many items will fit in
the image I take the height of the image and divide that by the LineSpacing property of the SpriteFont
of the Control base class. The startItem is set to 0, the first item, and the color for text to be drawn in
is set to Black.

The Draw method first draws the image for the ListBox. There is then a loop that loops from zero to
lineCount. There is an if statement inside the loop that checks to see if startItem + i is greater than or
equal to the Count property of the items. If it is I break out of the loop. There is another if statement
that compares startItem + i with the selectedItem field. If they are equal the string is drawn in using
the SelectedColor property, otherwise it is drawn using the Color property. To determine where to
draw the string I use the X value of the ListBox's Position property. To find the Y value I take the Y
value of the List Box's Position property and add i * SpriteFont.Linespacing. Also, if the current item
is the selectedItem I draw the cursor image to the left of the List Box. The Y position is the position of
the item plus 5 pixels and the X position is the X position of the item minus the width of the cursor and
2 pixels.

The HandleInput method first checks to make sure the control has focus. If it doesn't I exit out of the
method. I then check to see if the down key or the left thumb stick down has been released. If it is you
want to scroll the selection down. I check to see if selectedItem is not at the end of the items. If it isn't
I increment selectedItem by 1. If selectedItem is greater or equal to the startItem plus the lineCount
field then it is outside the items that fit into the ListBox and you want to move the startItem
accordingly. startItem is set to be selectedItem - LineCount + 1. The selection has changed so I call
OnSelectionChanged passing in null for the EventArgs.

For moving the selected item up I check to see if the up key or the left thumb stick up has been
released. If selectedItem is not zero I decrease selectedItem. If selectedItem is less than startItem the
selection is above the top item so I set startItem to be selectedItem. I then call OnSelectionChanged
passing in null for the EventArgs.

There is then an if statement that checks to see if the enter key or the A button have been released. If
they have I set the HasFocus property to false. It is important to use the property instead of the field.
The property will fire the Leave event, if it is subscribed to. I then call the OnSelected method of the
parent class passing in null for the EventArgs.

The last if statement checks to see if the escape key or the B button has been released. If they have I set
the HasFocus property to false. Again, it is important to use the property rather than the field or the
event won't fire.

There are then three methods: OnSelectionChanged, OnEnter, and OnLeave. These methods check
to see if the event associated with them is subscribed to. If the event is subscribed to the event is fired
passing in the EventArgs passed to the method.

I want to make a quick change to the ControlManager class. I want to add in a property, AcceptInput,
that if set to false the ControlManager won't accept input. What I mean is that if you press the up or
down key the selected control won't change. Add theses field and properties to the ControlManager
class and change the Update method to the following. The Update method exits if the AcceptInput
property is false.

bool acceptInput = true;

public bool AcceptInput
{
 get { return acceptInput; }
 set { acceptInput = value; }
}

public void Update(GameTime gameTime, PlayerIndex playerIndex)
{
 if (Count == 0)
 return;

 foreach (Control c in this)
 {
 if (c.Enabled)
 c.Update(gameTime);

 if (c.HasFocus)
 c.HandleInput(playerIndex);
 }

 if (!AcceptInput)
 return;

 if (InputHandler.ButtonPressed(Buttons.LeftThumbstickUp, playerIndex) ||
 InputHandler.ButtonPressed(Buttons.DPadUp, playerIndex) ||
 InputHandler.KeyPressed(Keys.Up))
 PreviousControl();

 if (InputHandler.ButtonPressed(Buttons.LeftThumbstickDown, playerIndex) ||
 InputHandler.ButtonPressed(Buttons.DPadDown, playerIndex) ||
 InputHandler.KeyPressed(Keys.Down))
 NextControl();
}

I've been planning on adding a screen to load games, now is a good time to do that. Before I get to that
screen though I want to change the CharacterGeneratorScreen and the GamePlayScreen. What I
plan to do is to move the code for creating a character and the world from the GamePlayScreen into
the CharacterGeneratorScreen. I'm going to make the player and world fields static and expose
them using properties. Open to code for GamePlayScreen and change the code to the following.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;

using EyesOfTheDragon.Components;

using XRpgLibrary;
using XRpgLibrary.TileEngine;
using XRpgLibrary.SpriteClasses;
using XRpgLibrary.WorldClasses;

namespace EyesOfTheDragon.GameScreens
{
 public class GamePlayScreen : BaseGameState
 {
 #region Field Region

 Engine engine = new Engine(32, 32);
 static Player player;
 static World world;

 #endregion

 #region Property Region

 public static World World
 {
 get { return world; }
 set { world = value; }
 }

 public static Player Player
 {
 get { return player; }
 set { player = value; }
 }

 #endregion

 #region Constructor Region

 public GamePlayScreen(Game game, GameStateManager manager)
 : base(game, manager)
 {
 }

 #endregion

 #region XNA Method Region

 public override void Initialize()
 {
 base.Initialize();
 }

 protected override void LoadContent()
 {
 base.LoadContent();

 }

 public override void Update(GameTime gameTime)
 {
 world.Update(gameTime);
 player.Update(gameTime);

 base.Update(gameTime);
 }

 public override void Draw(GameTime gameTime)
 {
 GameRef.SpriteBatch.Begin(
 SpriteSortMode.Deferred,
 BlendState.AlphaBlend,
 SamplerState.PointClamp,
 null,

 null,
 null,
 player.Camera.Transformation);

 base.Draw(gameTime);

 world.DrawLevel(GameRef.SpriteBatch, player.Camera);
 player.Draw(gameTime, GameRef.SpriteBatch);

 GameRef.SpriteBatch.End();
 }

 #endregion

 #region Abstract Method Region
 #endregion
 }
}

As you can see, it is much cleaner. The Update method just calls the Update methods of the world and
player fields. The Draw method just calls the Draw methods of the world and player fields as well.

Now, open the code for the CharacterGeneratorScreen. First, make sure you have all of the using
statements that you will need. Change the using statement area to the following.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;

using XRpgLibrary;
using XRpgLibrary.Controls;
using XRpgLibrary.SpriteClasses;
using XRpgLibrary.TileEngine;
using XRpgLibrary.WorldClasses;

using EyesOfTheDragon.Components;

What I did was in the linkLabel1_Selected method, after changing states, is call two methods. The
first, CreatePlayer, creates a player object and the second, CreateWorld, creates a world object.
Change the linkLabel1_Selected method to the following and add the CreatePlayer and CreateWorld
methods to the Method region.

void linkLabel1_Selected(object sender, EventArgs e)
{
 InputHandler.Flush();

 StateManager.ChangeState(GameRef.GamePlayScreen);

 CreatePlayer();
 CreateWorld();
}

private void CreatePlayer()
{
 Dictionary<AnimationKey, Animation> animations = new Dictionary<AnimationKey, Animation>();

 Animation animation = new Animation(3, 32, 32, 0, 0);
 animations.Add(AnimationKey.Down, animation);

 animation = new Animation(3, 32, 32, 0, 32);
 animations.Add(AnimationKey.Left, animation);

 animation = new Animation(3, 32, 32, 0, 64);
 animations.Add(AnimationKey.Right, animation);

 animation = new Animation(3, 32, 32, 0, 96);
 animations.Add(AnimationKey.Up, animation);

 AnimatedSprite sprite = new AnimatedSprite(
 characterImages[genderSelector.SelectedIndex, classSelector.SelectedIndex],
 animations);

 GamePlayScreen.Player = new Player(GameRef, sprite);
}

private void CreateWorld()
{
 Texture2D tilesetTexture = Game.Content.Load<Texture2D>(@"Tilesets\tileset1");
 Tileset tileset1 = new Tileset(tilesetTexture, 8, 8, 32, 32);

 tilesetTexture = Game.Content.Load<Texture2D>(@"Tilesets\tileset2");
 Tileset tileset2 = new Tileset(tilesetTexture, 8, 8, 32, 32);

 List<Tileset> tilesets = new List<Tileset>();
 tilesets.Add(tileset1);
 tilesets.Add(tileset2);

 MapLayer layer = new MapLayer(100, 100);

 for (int y = 0; y < layer.Height; y++)
 {
 for (int x = 0; x < layer.Width; x++)
 {
 Tile tile = new Tile(0, 0);

 layer.SetTile(x, y, tile);
 }
 }

 MapLayer splatter = new MapLayer(100, 100);

 Random random = new Random();

 for (int i = 0; i < 100; i++)
 {
 int x = random.Next(0, 100);
 int y = random.Next(0, 100);
 int index = random.Next(2, 14);

 Tile tile = new Tile(index, 0);
 splatter.SetTile(x, y, tile);
 }

 splatter.SetTile(1, 0, new Tile(0, 1));
 splatter.SetTile(2, 0, new Tile(2, 1));
 splatter.SetTile(3, 0, new Tile(0, 1));

 List<MapLayer> mapLayers = new List<MapLayer>();
 mapLayers.Add(layer);
 mapLayers.Add(splatter);

 TileMap map = new TileMap(tilesets, mapLayers);
 Level level = new Level(map);

 World world = new World(GameRef, GameRef.ScreenRectangle);
 world.Levels.Add(level);
 world.CurrentLevel = 0;

 GamePlayScreen.World = world;

}

The only code that you haven't seen before is where I create the AnimatedSprite object. I was able to
use the characterImages array with the values of the SelectedIndex properties of genderSelector and
classSelected.

Now it is time to add in the screen for loading games. Right click the GameScreens folder in the
EyesOfTheDragon project, select Add and then Class. Name this class LoadGameScreen. This is the
code for that class.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;
using Microsoft.Xna.Framework.Content;

using XRpgLibrary;
using XRpgLibrary.Controls;
using XRpgLibrary.SpriteClasses;
using XRpgLibrary.TileEngine;
using XRpgLibrary.WorldClasses;

using EyesOfTheDragon.Components;

namespace EyesOfTheDragon.GameScreens
{
 public class LoadGameScreen : BaseGameState
 {
 #region Field Region

 PictureBox backgroundImage;
 ListBox loadListBox;
 LinkLabel loadLinkLabel;
 LinkLabel exitLinkLabel;

 #endregion

 #region Property Region
 #endregion

 #region Constructor Region

 public LoadGameScreen(Game game, GameStateManager manager)
 : base(game, manager)
 {
 }

 #endregion

 #region Method Region

 protected override void LoadContent()
 {
 base.LoadContent();

 ContentManager Content = Game.Content;

 backgroundImage = new PictureBox(
 Content.Load<Texture2D>(@"Backgrounds\titlescreen"),
 GameRef.ScreenRectangle);
 ControlManager.Add(backgroundImage);

 loadLinkLabel = new LinkLabel();
 loadLinkLabel.Text = "Select game";
 loadLinkLabel.Position = new Vector2(50, 100);
 loadLinkLabel.Selected += new EventHandler(loadLinkLabel_Selected);
 ControlManager.Add(loadLinkLabel);

 exitLinkLabel = new LinkLabel();
 exitLinkLabel.Text = "Back";
 exitLinkLabel.Position = new Vector2(50, 100 + exitLinkLabel.SpriteFont.LineSpacing);
 exitLinkLabel.Selected += new EventHandler(exitLinkLabel_Selected);
 ControlManager.Add(exitLinkLabel);

 loadListBox = new ListBox(
 Content.Load<Texture2D>(@"GUI\listBoxImage"),
 Content.Load<Texture2D>(@"GUI\rightarrowUp"));
 loadListBox.Position = new Vector2(400, 100);
 loadListBox.Selected += new EventHandler(loadListBox_Selected);
 loadListBox.Leave += new EventHandler(loadListBox_Leave);

 for (int i = 0; i < 20; i++)
 loadListBox.Items.Add("Game number: " + i.ToString());
 ControlManager.Add(loadListBox);

 ControlManager.NextControl();
 }

 public override void Update(GameTime gameTime)
 {
 ControlManager.Update(gameTime, PlayerIndex.One);

 base.Update(gameTime);

 }

 public override void Draw(GameTime gameTime)
 {
 GameRef.SpriteBatch.Begin();

 base.Draw(gameTime);

 ControlManager.Draw(GameRef.SpriteBatch);

 GameRef.SpriteBatch.End();
 }

 #endregion

 #region Method Region

 void loadListBox_Leave(object sender, EventArgs e)
 {
 ControlManager.AcceptInput = true;
 }

 void loadLinkLabel_Selected(object sender, EventArgs e)
 {
 ControlManager.AcceptInput = false;
 loadLinkLabel.HasFocus = false;
 loadListBox.HasFocus = true;
 }

 void loadListBox_Selected(object sender, EventArgs e)
 {
 loadLinkLabel.HasFocus = true;
 loadListBox.HasFocus = false;
 ControlManager.AcceptInput = true;

 StateManager.ChangeState(GameRef.GamePlayScreen);
 CreatePlayer();
 CreateWorld();

 }

 void exitLinkLabel_Selected(object sender, EventArgs e)
 {
 StateManager.PopState();
 }

 private void CreatePlayer()
 {
 Dictionary<AnimationKey, Animation> animations = new Dictionary<AnimationKey,
Animation>();

 Animation animation = new Animation(3, 32, 32, 0, 0);
 animations.Add(AnimationKey.Down, animation);

 animation = new Animation(3, 32, 32, 0, 32);
 animations.Add(AnimationKey.Left, animation);

 animation = new Animation(3, 32, 32, 0, 64);
 animations.Add(AnimationKey.Right, animation);

 animation = new Animation(3, 32, 32, 0, 96);
 animations.Add(AnimationKey.Up, animation);

 AnimatedSprite sprite = new AnimatedSprite(
 GameRef.Content.Load<Texture2D>(@"PlayerSprites\malefighter"),
 animations);

 GamePlayScreen.Player = new Player(GameRef, sprite);
 }

 private void CreateWorld()
 {
 Texture2D tilesetTexture = Game.Content.Load<Texture2D>(@"Tilesets\tileset1");
 Tileset tileset1 = new Tileset(tilesetTexture, 8, 8, 32, 32);

 tilesetTexture = Game.Content.Load<Texture2D>(@"Tilesets\tileset2");
 Tileset tileset2 = new Tileset(tilesetTexture, 8, 8, 32, 32);

 List<Tileset> tilesets = new List<Tileset>();
 tilesets.Add(tileset1);
 tilesets.Add(tileset2);

 MapLayer layer = new MapLayer(100, 100);

 for (int y = 0; y < layer.Height; y++)
 {
 for (int x = 0; x < layer.Width; x++)
 {
 Tile tile = new Tile(0, 0);

 layer.SetTile(x, y, tile);
 }
 }

 MapLayer splatter = new MapLayer(100, 100);

 Random random = new Random();

 for (int i = 0; i < 100; i++)
 {
 int x = random.Next(0, 100);
 int y = random.Next(0, 100);
 int index = random.Next(2, 14);

 Tile tile = new Tile(index, 0);
 splatter.SetTile(x, y, tile);
 }

 splatter.SetTile(1, 0, new Tile(0, 1));

 splatter.SetTile(2, 0, new Tile(2, 1));
 splatter.SetTile(3, 0, new Tile(0, 1));

 List<MapLayer> mapLayers = new List<MapLayer>();
 mapLayers.Add(layer);
 mapLayers.Add(splatter);

 TileMap map = new TileMap(tilesets, mapLayers);
 Level level = new Level(map);

 World world = new World(GameRef, GameRef.ScreenRectangle);
 world.Levels.Add(level);
 world.CurrentLevel = 0;

 GamePlayScreen.World = world;
 }

 #endregion
 }
}

There are some using statements to bring some of the XNA Framework classes into scope as well as
classes from our XRpgLibrary. There is also a using statement to bring the Components name space
of EyesOfTheDragon into scope.

There is a PictureBox field for a background image, a ListBox field to hold the games that can be
loaded, and two LinkLabel fields. The first, loadLinkLabel, will be used to activate the ListBox that
holds the games. The second, exitLinkLabel, returns back to the start menu.

In the LoadContent method I create the controls on the form. The code for creating the PictureBox
and LinkLabels is nothing new. Creating the ListBox will be new. The list box takes two parameters:
the image for the ListBox and an image for the cursor. I set the position of the ListBox to line up
vertically with the loadLinkLabel. I then wire the Selected and Leave events of the ListBox. In a for
loop I add 20 strings to the ListBox, to demonstrate how it works. I add it to the ControlManager and
then call the NextControl method of the ControlManager class.

The Update method just calls the Update method of the ControlManager class. The Draw method
wraps the base.Draw method call in calls to Begin and End of the SpriteBatch from the game and
calls the Draw method of the ControlManager after the call to base.Draw.

The loadLinkLabel_Selected method is where I handle if the loadLinkLabel has been selected. If it
has I set the AcceptInput property of ControlManager to false. I then set the HasFocus property of
loadLinkLabel to false and the HasFocus property of loadListBox to true. This essentially makes it so
that the player can select items from the List Box with out the selected item in the control manager
changing.

The exitLinkLabel_Selected method it where I handle if the exitLinkLabel has been selected. All that
this method does is pop the current screen of the top of the state manager.

The loadListBox_Selected method is where I handle if the player hit the enter key when loadListBox
was the active control. I set the HasFocus property of loadLinkLabel to true and the AcceptInput
property of ControlManager to true so the selected control can be changed. I then change the state to
the GamePlayScreen and call the CreatePlayer and CreateWorld methods.

The loadListBox_Leave method is where I handle if the player hit the escape key when loadListBox

was the active control. I set the HasFocus method of loadLinkLabel to true and the AcceptInput
property of ControlManager to true.

The CreatePlayer and CreateWorld methods create the player and world. The only difference is
where the AnimatedSprite is created for the player. For the Texture2D of the sprite I use the male
fighter sprite. Eventually when you are able to write out and read in games you will load the sprite
appropriate to the player's character.

I'm going to end this tutorial here as it is getting to be on the long side. I want to try and keep them to a
reasonable length so that you don't have too much to digest at once. I encourage you to visit the news
page of my site, XNA Game Programming Adventures , for the latest news on my tutorials.

Good luck in your game programming adventures!

Jamie McMahon

http://xnagpa.net/news.html
http://xnagpa.net/news.html

