
XNA 4.0 RPG Tutorials

Part 12

Updating Game

I'm writing these tutorials for the new XNA 4.0 framework. The tutorials will make more sense if they
are read in order. You can find the list of tutorials on the XNA 4.0 RPG tutorials page of my web site. I
will be making my version of the project available for download at the end of each tutorial. It will be
included on the page that links to the tutorials.

This tutorial is going to focus on moving a few things around and update the World class. For example,
I want to move the player's sprite to the Player class. I also want to make a few modifications to the tile
engine. To get started load up your solution from last time. Right click the EyesOfTheDragon project
in the solution explorer and select Set As StartUp Project.

'm also going to add a class to go with the World class called Level. The World class will be made up
of levels. Each level is an area of the game. The Level will have various things associated with it,
including a TileMap. After adding the Level class I will integrate it into the World class. I will then
move to using the World class in the GamePlayScreen instead of a TileMap for drawing the world.

Right click the WorldClassses folder in the XRpgLibrary project, select Add and then Class. Name
this new class Level. This is the code for that class.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using XRpgLibrary.TileEngine;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;

namespace XRpgLibrary.WorldClasses
{
 public class Level
 {
 #region Field Region

 readonly TileMap map;

 #endregion

 #region Property Region

 public TileMap Map
 {
 get { return map; }
 }

 #endregion

 #region Constructor Region

http://xnagpa.net/xnarpg4tutorials.html

 public Level(TileMap tileMap)
 {
 map = tileMap;
 }

 #endregion

 #region Method Region

 public void Update(GameTime gameTime)
 {
 }

 public void Draw(SpriteBatch spiteBatch, Camera camera)
 {
 map.Draw(spiteBatch, camera);
 }

 #endregion
 }
}

This is a rather simple class but it will be fleshed out more as the game progresses. There is a readonly
TileMap field called map. I set it readonly so it can't accidentally get assigned to. There is a public
property that exposes the map field called Map that is get only. The constructor takes a TileMap as a
parameter and sets the map field using it. There is an Update method to update the Level. There is also
a Draw method to draw the map.

I updated the World class to use the Level class. I also made it a DrawableGameComponent. Change
the World class to the following.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;

using RpgLibrary.CharacterClasses;
using RpgLibrary.ItemClasses;

using XRpgLibrary.TileEngine;
using XRpgLibrary.SpriteClasses;

namespace XRpgLibrary.WorldClasses
{
 public class World : DrawableGameComponent
 {
 #region Graphic Field and Property Region

 Rectangle screenRect;

 public Rectangle ScreenRectangle
 {
 get { return screenRect; }
 }

 #endregion

 #region Item Field and Property Region

 ItemManager itemManager = new ItemManager();

 #endregion

 #region Level Field and Property Region

 readonly List<Level> levels = new List<Level>();
 int currentLevel = -1;

 public List<Level> Levels
 {
 get { return levels; }
 }

 public int CurrentLevel
 {
 get { return currentLevel; }
 set
 {
 if (value < 0 || value >= levels.Count)
 throw new IndexOutOfRangeException();

 if (levels[value] == null)
 throw new NullReferenceException();

 currentLevel = value;
 }
 }

 #endregion

 #region Constructor Region

 public World(Game game, Rectangle screenRectangle)
 : base(game)
 {
 screenRect = screenRectangle;
 }

 #endregion

 #region Method Region

 public override void Update(GameTime gameTime)
 {
 }

 public override void Draw(GameTime gameTime)
 {
 base.Draw(gameTime);
 }

 public void DrawLevel(SpriteBatch spriteBatch, Camera camera)
 {
 levels[currentLevel].Draw(spriteBatch, camera);
 }

 #endregion
 }
}

I added a readonly field to the class, levels, is a List<Level>. I also added in a field, currentLevel, that
returns the current level the player is on. There is a get only property to expose the levels, Levels.
There is also a property to expose the currentLevel field, CurrentLevel. The get part just returns the
currentLevel field. The set part throws an IndexOutOfBounds exception if you try and set
currentLevel to an inappropriate value. It will also throw an exception if the level at the index is null.
It then sets the currentLevel field to the value passed in. The DrawLevel method draws the current
level. It has for parameters a SpriteBatch and Camera objects. It just calls the Draw method of the
Level class.

The GamePlayScreen needs to be updated to use the World class. I also moved the code for
controlling the sprite and camera into the Player class. I also updated the constructor to take an
AnimatedSprite parameter for the sprite of the player. I also added the code to draw the sprite to the
Player class. Change the Player class to the following.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;

using XRpgLibrary;
using XRpgLibrary.TileEngine;
using XRpgLibrary.SpriteClasses;

namespace EyesOfTheDragon.Components
{
 public class Player
 {
 #region Field Region

 Camera camera;
 Game1 gameRef;
 readonly AnimatedSprite sprite;

 #endregion

 #region Property Region

 public Camera Camera
 {
 get { return camera; }
 set { camera = value; }
 }

 public AnimatedSprite Sprite
 {
 get { return sprite; }
 }

 #endregion

 #region Constructor Region

 public Player(Game game, AnimatedSprite sprite)
 {
 gameRef = (Game1)game;
 camera = new Camera(gameRef.ScreenRectangle);
 this.sprite = sprite;
 }

 #endregion

 #region Method Region

 public void Update(GameTime gameTime)
 {
 camera.Update(gameTime);
 sprite.Update(gameTime);

 if (InputHandler.KeyReleased(Keys.PageUp) ||
 InputHandler.ButtonReleased(Buttons.LeftShoulder, PlayerIndex.One))
 {
 camera.ZoomIn();
 if (camera.CameraMode == CameraMode.Follow)

 camera.LockToSprite(sprite);
 }
 else if (InputHandler.KeyReleased(Keys.PageDown) ||
 InputHandler.ButtonReleased(Buttons.RightShoulder, PlayerIndex.One))
 {
 camera.ZoomOut();
 if (camera.CameraMode == CameraMode.Follow)
 camera.LockToSprite(sprite);
 }

 Vector2 motion = new Vector2();

 if (InputHandler.KeyDown(Keys.W) ||
 InputHandler.ButtonDown(Buttons.LeftThumbstickUp, PlayerIndex.One))
 {
 sprite.CurrentAnimation = AnimationKey.Up;
 motion.Y = -1;
 }
 else if (InputHandler.KeyDown(Keys.S) ||
 InputHandler.ButtonDown(Buttons.LeftThumbstickDown, PlayerIndex.One))
 {
 sprite.CurrentAnimation = AnimationKey.Down;
 motion.Y = 1;
 }

 if (InputHandler.KeyDown(Keys.A) ||
 InputHandler.ButtonDown(Buttons.LeftThumbstickLeft, PlayerIndex.One))
 {
 sprite.CurrentAnimation = AnimationKey.Left;
 motion.X = -1;
 }
 else if (InputHandler.KeyDown(Keys.D) ||
 InputHandler.ButtonDown(Buttons.LeftThumbstickRight, PlayerIndex.One))
 {
 sprite.CurrentAnimation = AnimationKey.Right;
 motion.X = 1;
 }

 if (motion != Vector2.Zero)
 {
 sprite.IsAnimating = true;
 motion.Normalize();

 sprite.Position += motion * sprite.Speed;
 sprite.LockToMap();

 if (camera.CameraMode == CameraMode.Follow)
 camera.LockToSprite(sprite);
 }
 else
 {
 sprite.IsAnimating = false;
 }

 if (InputHandler.KeyReleased(Keys.F) ||
 InputHandler.ButtonReleased(Buttons.RightStick, PlayerIndex.One))
 {
 camera.ToggleCameraMode();
 if (camera.CameraMode == CameraMode.Follow)
 camera.LockToSprite(sprite);
 }

 if (camera.CameraMode != CameraMode.Follow)
 {
 if (InputHandler.KeyReleased(Keys.C) ||
 InputHandler.ButtonReleased(Buttons.LeftStick, PlayerIndex.One))
 {
 camera.LockToSprite(sprite);
 }
 }

 }

 public void Draw(GameTime gameTime, SpriteBatch spriteBatch)
 {
 sprite.Draw(gameTime, spriteBatch, camera);
 }

 #endregion
 }
}

You will notice that I have the sprite field set to readonly. That means it can't be assigned to other than
as a class initializer or the constructor. You can still interact with it though, like calling a method or
setting a field. I also added a property to expose the sprite outside of the Player class. The one thing I
will mention about the Update method is that you should update the sprite after you update the camera.
The Draw method just calls the Draw method of the sprite field.

I also changed the GamePlayScreen class to use the World class. Change the GamePlayScreen to the
following.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;

using EyesOfTheDragon.Components;

using XRpgLibrary;
using XRpgLibrary.TileEngine;
using XRpgLibrary.SpriteClasses;
using XRpgLibrary.WorldClasses;

namespace EyesOfTheDragon.GameScreens
{
 public class GamePlayScreen : BaseGameState
 {
 #region Field Region

 Engine engine = new Engine(32, 32);
 Player player;
 World world;

 #endregion

 #region Property Region
 #endregion

 #region Constructor Region

 public GamePlayScreen(Game game, GameStateManager manager)
 : base(game, manager)
 {
 world = new World(game, GameRef.ScreenRectangle);
 }

 #endregion

 #region XNA Method Region

 public override void Initialize()
 {

 base.Initialize();
 }

 protected override void LoadContent()
 {
 Texture2D spriteSheet = Game.Content.Load<Texture2D>(
 @"PlayerSprites\" +
 GameRef.CharacterGeneratorScreen.SelectedGender +
 GameRef.CharacterGeneratorScreen.SelectedClass);

 Dictionary<AnimationKey, Animation> animations = new Dictionary<AnimationKey,
Animation>();

 Animation animation = new Animation(3, 32, 32, 0, 0);
 animations.Add(AnimationKey.Down, animation);

 animation = new Animation(3, 32, 32, 0, 32);
 animations.Add(AnimationKey.Left, animation);

 animation = new Animation(3, 32, 32, 0, 64);
 animations.Add(AnimationKey.Right, animation);

 animation = new Animation(3, 32, 32, 0, 96);
 animations.Add(AnimationKey.Up, animation);

 AnimatedSprite sprite = new AnimatedSprite(spriteSheet, animations);
 player = new Player(GameRef, sprite);

 base.LoadContent();

 Texture2D tilesetTexture = Game.Content.Load<Texture2D>(@"Tilesets\tileset1");
 Tileset tileset1 = new Tileset(tilesetTexture, 8, 8, 32, 32);

 tilesetTexture = Game.Content.Load<Texture2D>(@"Tilesets\tileset2");
 Tileset tileset2 = new Tileset(tilesetTexture, 8, 8, 32, 32);

 List<Tileset> tilesets = new List<Tileset>();
 tilesets.Add(tileset1);
 tilesets.Add(tileset2);

 MapLayer layer = new MapLayer(100, 100);

 for (int y = 0; y < layer.Height; y++)
 {
 for (int x = 0; x < layer.Width; x++)
 {
 Tile tile = new Tile(0, 0);

 layer.SetTile(x, y, tile);
 }
 }

 MapLayer splatter = new MapLayer(100, 100);

 Random random = new Random();

 for (int i = 0; i < 100; i++)
 {
 int x = random.Next(0, 100);
 int y = random.Next(0, 100);
 int index = random.Next(2, 14);

 Tile tile = new Tile(index, 0);
 splatter.SetTile(x, y, tile);
 }

 splatter.SetTile(1, 0, new Tile(0, 1));
 splatter.SetTile(2, 0, new Tile(2, 1));
 splatter.SetTile(3, 0, new Tile(0, 1));

 List<MapLayer> mapLayers = new List<MapLayer>();
 mapLayers.Add(layer);
 mapLayers.Add(splatter);

 TileMap map = new TileMap(tilesets, mapLayers);
 Level level = new Level(map);
 world.Levels.Add(level);
 world.CurrentLevel = 0;
 }

 public override void Update(GameTime gameTime)
 {
 player.Update(gameTime);

 base.Update(gameTime);
 }

 public override void Draw(GameTime gameTime)
 {
 GameRef.SpriteBatch.Begin(
 SpriteSortMode.Deferred,
 BlendState.AlphaBlend,
 SamplerState.PointClamp,
 null,
 null,
 null,
 player.Camera.Transformation);

 world.DrawLevel(GameRef.SpriteBatch, player.Camera);

 player.Draw(gameTime, GameRef.SpriteBatch);

 base.Draw(gameTime);

 GameRef.SpriteBatch.End();
 }

 #endregion

 #region Abstract Method Region
 #endregion
 }
}

I first remove the sprite field as it is no longer needed. I also added in a World field. You can no longer
create the Player object in the constructor so that was moved to the LoadContent method. There is a
local variable in the LoadContent method to hold the sprite for the player. After creating the sprite I
create the Player object passing in the GameRef field and the sprite I just created. There is now a local
variable of type TileMap. I then create a Level object using the TileMap. I add the level to the list of
levels in the World object. I then set the CurrentLevel property to be 0, the only level there is.

The Update method just calls the Update method of the Player object. The Update method now just
calls the Update method of the Player class. The Draw method now calls the Draw method of the
Player object after calling the DrawLevel method of the World object.

The tile engine isn't all that efficient at the moment. Every tile in the map is being drawn and there are
far more tiles in the map than can fit on the screen. It would be much better to only draw the visible
tiles, plus and minus 1 tile. The reason I say plus and minus 1 is if the sprite is in the middle of a tile
and you don't add 1 tile on the right side the blue background will show through, the same is true for
the bottom. The same is true for the left and top except you subtract 1 instead of adding it. Change the
Draw method of the TileMap class to the following.

public void Draw(SpriteBatch spriteBatch, Camera camera)
{
 Point cameraPoint = Engine.VectorToCell(camera.Position * (1 / camera.Zoom));
 Point viewPoint = Engine.VectorToCell(
 new Vector2(
 (camera.Position.X + camera.ViewportRectangle.Width) * (1 / camera.Zoom),
 (camera.Position.Y + camera.ViewportRectangle.Height) * (1 / camera.Zoom)));

 Point min = new Point();
 Point max = new Point();

 min.X = Math.Max(0, cameraPoint.X - 1);
 min.Y = Math.Max(0, cameraPoint.Y - 1);
 max.X = Math.Min(viewPoint.X + 1, mapWidth);
 max.Y = Math.Min(viewPoint.Y + 1, mapHeight);

 Rectangle destination = new Rectangle(0, 0, Engine.TileWidth, Engine.TileHeight);
 Tile tile;

 foreach (MapLayer layer in mapLayers)
 {
 for (int y = min.Y; y < max.Y; y++)
 {
 destination.Y = y * Engine.TileHeight;

 for (int x = min.X; x < max.X; x++)
 {
 tile = layer.GetTile(x, y);

 if (tile.TileIndex == -1 || tile.Tileset == -1)
 continue;

 destination.X = x * Engine.TileWidth;

 spriteBatch.Draw(
 tilesets[tile.Tileset].Texture,
 destination,
 tilesets[tile.Tileset].SourceRectangles[tile.TileIndex],
 Color.White);
 }
 }
 }
}

The fact that I allowed the camera to zoom in and out makes life a little more difficult for you. If you
are zooming in, zoom > 1, you are showing less of the map. If you are zooming out, zoom < 1, you are
showing more of the map. That affects where to start and stop drawing tiles. You need to use the
inverse, 1 divided by a value, of the zoom value to control where to start and stop drawing tiles.

There are four Point variables in this class. The first, cameraPoint, is the tile the camera is in. The
second, viewPoint, is the tile the camera plus the size of the view port. To find the tile the camera is in
you take the camera's position and multiply it by the inverse of the zoom value of the camera. To find
the tile the camera is in plus the size of the screen you do the same. For the X value you take the X
value of the camera's position and add the width of the view port. You then multiply that value by the
inverse of the zoom value. Similarly, for the Y value you take the Y value of the camera's position and
add the height of the view port. You then multiply that value by the inverse of the zoom value.

The other two points are min and max. They hold the start and ending values of where to start and stop
drawing tiles. I use the Math.Max method to determine where to start drawing tiles from. It returns the
maximum of the two values passed in. I pass in 0 and cameraPoint minus 1 for both X and Y. If the
camera starts out in tile (0, 0) and up just subtract 1 you will generate an IndexOutOfBounds
exception that the game will crash. To determine the values of max I used the Math.Min method. This

method returns the minimum of the two values passed in. I pass in the viewPoint plus 1 and the width
or height of the map. Now in the for loops that I do the drawing from I start the outer loop at min.Y and
end at max.Y. Similarly, for the inner loop I start at min.X and end at max.X.

There has been a request for a list box control on my forum. I was going to add in a list box to the
controls in this tutorial. There is a slight problem though. I've been using the up and down keys to
move between controls on the screen. That means I can't easily use the up and down keys to scroll up
and down in the list box as well. So, I'm going to hold off on that for this tutorial. I plan on adding in a
list box control though.

I'm going to end this tutorial here as I don't want to get into anything new. I want to try and keep the
tutorials to a reasonable length so that you don't have too much to digest at once. I encourage you to
visit the news page of my site, XNA Game Programming Adventures , for the latest news on my
tutorials.

Good luck in your game programming adventures!
Jamie McMahon

http://xnagpa.net/news.html
http://xnagpa.net/news.html
http://xnagpa.net/forum/

