
XNA 4.0 RPG Tutorials

Part 11c

Game Editors

I'm writing these tutorials for the new XNA 4.0 framework. The tutorials will make more sense if they
are read in order. You can find the list of tutorials on the XNA 4.0 RPG tutorials page of my web site. I
will be making my version of the project available for download at the end of each tutorial. It will be
included on the page that links to the tutorials.

This is the third part of the tutorial on adding a game editor to the project. This tutorial will be more
about coding than designing forms. You will want to make the editor the start up project for the
duration of this tutorial. Right click the RpgEditor project in the solution explorer and select Set As
StartUp Project.

I want to make a quick change to the forms that hold all of a specific class in the game. To start remove
all code from FormWeapon, FormArmor, FormShield, and FormClasses that has to do with menu
items. For example the code for FormWeapon looks like this now.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace RpgEditor
{

 public partial class FormWeapon : FormDetails
 {
 #region Field Region
 #endregion

 #region Property Region
 #endregion

 #region Constructor Region

 public FormWeapon()
 {
 InitializeComponent();

 btnAdd.Click += new EventHandler(btnAdd_Click);
 btnEdit.Click += new EventHandler(btnEdit_Click);
 btnDelete.Click += new EventHandler(btnDelete_Click);
 }

 #endregion

 #region Button Event Handler Region

 void btnAdd_Click(object sender, EventArgs e)

http://xnagpa.net/xnarpg4tutorials.html

 {
 }

 void btnEdit_Click(object sender, EventArgs e)
 {
 }

 void btnDelete_Click(object sender, EventArgs e)
 {
 }

 #endregion
 }
}

Go to the designer view of FormDetails by right clicking it and selecting View Designer. Right click
on the Menu Item Strip and select Delete. Now click on the List Box and move its top border up a
little.

You don't want the forms that inherit from FormDetails to close when the user tries to close the form.
You only want to close them when the parent MDI form is closed. Luckily enough there is an event that
you can wire and stop that from happening. Right click FormDetails in the solution explorer and select
View Code. Change the Constructor region to the following and add this new region.

#region Constructor Region

public FormDetails()
{
 InitializeComponent();

 if (FormDetails.ItemManager == null)
 ItemManager = new ItemManager();

 if (FormDetails.EntityDataManager == null)
 EntityDataManager = new EntityDataManager();

 this.FormClosing += new FormClosingEventHandler(FormDetails_FormClosing);
}

#endregion

#region Event Handler Region

void FormDetails_FormClosing(object sender, FormClosingEventArgs e)
{
 if (e.CloseReason == CloseReason.UserClosing)
 {
 e.Cancel = true;
 this.Hide();
 }

 if (e.CloseReason == CloseReason.MdiFormClosing)
 {
 e.Cancel = false;
 this.Close();
 }
}

#endregion

The FormClosing event is an event that can be canceled. The FormClosingEventArgs argument has a
property, CloseReason, that holds the reason why the form is being closed. If the value is UserClosing,
the user tried to close the form, I set the Cancel property to true so the event will be canceled and I call

the Hide method to hide the form. If the CloseReason is MdiFormClosing then the main form is
closing and you want to close the form. I set the Cancel property to false and call the Close method of
the form. Right click the FormDetails form again in the solution explorer and this time select View
Designer. Set the MinimizeBox property to false so the user can't minimize the form.

When a menu item is selected you want to bring that form to the front. Lucky enough there is a method
you can call to do just that, BringToFront. Right click FormMain in the solution explorer and select
View Code to open the code for that form. Change the event handlers for the Menu Item Event
Handler region to the following.

#region Menu Item Event Handler Region

void newGameToolStripMenuItem_Click(object sender, EventArgs e)
{
 using (FormNewGame frmNewGame = new FormNewGame())
 {
 DialogResult result = frmNewGame.ShowDialog();

 if (result == DialogResult.OK && frmNewGame.RolePlayingGame != null)
 {
 classesToolStripMenuItem.Enabled = true;
 itemsToolStripMenuItem.Enabled = true;

 rolePlayingGame = frmNewGame.RolePlayingGame;
 }
 }
}

void openGameToolStripMenuItem_Click(object sender, EventArgs e)
{
}

void saveGameToolStripMenuItem_Click(object sender, EventArgs e)
{
}

void exitToolStripMenuItem_Click(object sender, EventArgs e)
{
 this.Close();
}

void classesToolStripMenuItem_Click(object sender, EventArgs e)
{
 if (frmClasses == null)
 {
 frmClasses = new FormClasses();
 frmClasses.MdiParent = this;
 }

 frmClasses.Show();
 frmClasses.BringToFront();
}

void armorToolStripMenuItem_Click(object sender, EventArgs e)
{
 if (frmArmor == null)
 {
 frmArmor = new FormArmor();
 frmArmor.MdiParent = this;
 }

 frmArmor.Show();
 frmArmor.BringToFront();
}

void shieldToolStripMenuItem_Click(object sender, EventArgs e)

{
 if (frmShield == null)
 {
 frmShield = new FormShield();
 frmShield.MdiParent = this;
 }

 frmShield.Show();
 frmShield.BringToFront();
}

void weaponToolStripMenuItem_Click(object sender, EventArgs e)
{
 if (frmWeapon == null)
 {
 frmWeapon = new FormWeapon();
 frmWeapon.MdiParent = this;
 }

 frmWeapon.Show();
 frmWeapon.BringToFront();
}

#endregion

The new code just calls the BringToFront method after the Show method so that form will be on top
of all other forms. What I'm going to do next is handle creating a new game from the main form. I want
to add a couple static fields and get only properties to expose their values. Also add a using statement
for the System.IO name space.

using System.IO;

static string gamePath = "";
static string classPath = "";
static string itemPath = "";

There are a few things I need to do with the RpgLibrary. In order to deserialize the objects you need a
constructor that takes no parameters. Instead of adding constructors that take no parameters to the item
classes I instead created data classes with just public fields that match. For the RolePlayingGame class
I did just add in a constructor that took no parameters. Add the following constructor to the constructor
region of the RolePlayingGame class.

public RolePlayingGame()
{
}

Now, right click the ItemClasses folder in the RpgLibrary project, select Add and then Class. Name
the class ArmorData. Repeat the process twice and name the classes ShieldData and WeaponData.
The code for those three classes follows next.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.ItemClasses
{
 public class ArmorData
 {
 public string Name;
 public string Type;
 public int Price;
 public float Weight;

 public bool Equipped;
 public ArmorLocation ArmorLocation;
 public int DefenseValue;
 public int DefenseModifier;
 public string[] AllowableClasses;
 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.ItemClasses
{
 public class ShieldData
 {
 public string Name;
 public string Type;
 public int Price;
 public float Weight;
 public bool Equipped;
 public int DefenseValue;
 public int DefenseModifier;
 public string[] AllowableClasses;
 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.ItemClasses
{
 public class WeaponData
 {
 public string Name;
 public string Type;
 public int Price;
 public float Weight;
 public bool Equipped;
 public Hands NumberHands;
 public int AttackValue;
 public int AttackModifier;
 public int DamageValue;
 public int DamageModifier;
 public string[] AllowableClasses;
 }
}

I'm going to add in a class to manage all of these item data classes. Right click the ItemClasses folder
in the RpgLibrary project, select Add and then Class. Name this new class ItemDataManager. This
is the code for that class.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.ItemClasses
{
 public class ItemDataManager
 {
 #region Field Region

 readonly Dictionary<string,ArmorData> armorData = new Dictionary<string, ArmorData>();
 readonly Dictionary<string,ShieldData> shieldData = new Dictionary<string, ShieldData>();

 readonly Dictionary<string,WeaponData> weaponData = new Dictionary<string, WeaponData>();

 #endregion

 #region Property Region

 public Dictionary<string, ArmorData> ArmorData
 {
 get { return armorData; }
 }

 public Dictionary<string, ShieldData> ShieldData
 {
 get { return shieldData; }
 }

 public Dictionary<string, WeaponData> WeaponData
 {
 get { return weaponData; }
 }

 #endregion

 #region Constructor Region
 #endregion

 #region Method Region
 #endregion
 }
}

It works the same way as the EntityDataManager class works except there are three dictionaries
instead of the one. I want to change the ItemManager field in FormDetails to be ItemDataManager
instead. I also want to expose the itemManager and entityDataManager field to other forms. Change
the Field, Property, and Constructor regions in FormDetails to the following.

#region Field Region

protected static ItemDataManager itemManager;
protected static EntityDataManager entityDataManager;

#endregion

#region Property Region

public static ItemDataManager ItemManager
{
 get { return itemManager; }
 private set { itemManager = value; }
}

public static EntityDataManager EntityDataManager
{
 get { return entityDataManager; }
 private set { entityDataManager = value; }
}

#endregion

#region Constructor Region

public FormDetails()
{
 InitializeComponent();

 if (FormDetails.ItemManager == null)
 ItemManager = new ItemDataManager();

 if (FormDetails.EntityDataManager == null)
 EntityDataManager = new EntityDataManager();

 this.FormClosing += new FormClosingEventHandler(FormDetails_FormClosing);
}

#endregion

I want to add a method to FormClasses, FormArmor, FormShield, and FormWeapon. This method
will fill the list box of the form with the appropriate data. The code for the method of each form
follows next.

FormClasses
public void FillListBox()
{
 lbDetails.Items.Clear();

 foreach (string s in FormDetails.EntityDataManager.EntityData.Keys)
 lbDetails.Items.Add(FormDetails.EntityDataManager.EntityData[s]);
}

FormArmor
public void FillListBox()
{
 lbDetails.Items.Clear();

 foreach (string s in FormDetails.ItemManager.ArmorData.Keys)
 lbDetails.Items.Add(FormDetails.ItemManager.ArmorData[s]);
}

FormShield
public void FillListBox()
{
 lbDetails.Items.Clear();

 foreach (string s in FormDetails.ItemManager.ShieldData.Keys)
 lbDetails.Items.Add(FormDetails.ItemManager.ShieldData[s]);
}

FormWeapon
public void FillListBox()
{
 lbDetails.Items.Clear();

 foreach (string s in FormDetails.ItemManager.WeaponData.Keys)
 lbDetails.Items.Add(FormDetails.ItemManager.WeaponData[s]);
}

In the Click event handler of the New Game menu item is where I will handle creating a new game.
Change the newGameMenuToolStripItem_Click method to the following.

void newGameToolStripMenuItem_Click(object sender, EventArgs e)
{
 using (FormNewGame frmNewGame = new FormNewGame())
 {
 DialogResult result = frmNewGame.ShowDialog();

 if (result == DialogResult.OK && frmNewGame.RolePlayingGame != null)
 {
 FolderBrowserDialog folderDialog = new FolderBrowserDialog();

 folderDialog.Description = "Select folder to create game in.";

 folderDialog.SelectedPath = Application.StartupPath;

 DialogResult folderResult = folderDialog.ShowDialog();

 if (folderResult == DialogResult.OK)
 {
 try
 {

 gamePath = Path.Combine(folderDialog.SelectedPath, "Game");
 classPath = Path.Combine(gamePath, "Classes");
 itemPath = Path.Combine(gamePath, "Items");

 if (Directory.Exists(gamePath))
 throw new Exception("Selected directory already exists.");

 Directory.CreateDirectory(gamePath);
 Directory.CreateDirectory(classPath);
 Directory.CreateDirectory(itemPath + @"\Armor");
 Directory.CreateDirectory(itemPath + @"\Shield");
 Directory.CreateDirectory(itemPath + @"\Weapon");

 rolePlayingGame = frmNewGame.RolePlayingGame;
 XnaSerializer.Serialize<RolePlayingGame>(gamePath + @"\Game.xml",
rolePlayingGame);
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString());
 return;
 }

 classesToolStripMenuItem.Enabled = true;
 itemsToolStripMenuItem.Enabled = true;

 }
 }
 }
}

The new code is in the if statement that checks to see if the result of the dialog was DialogResult.OK
and that the RolePlayingGame property of the form is not null. If those were both true I create a
FolderBrowserDialog object. I set the SelectedPath property to be the path where the editor started
from. I also set the Description property to let the user know what folder they are browsing for. I
capture the result of showing that dialog. If the result was DialogResult.OK there is a try-catch block
where I attempt to make directories to save the game in. I use the Combine method of the Path class to
create the paths to save to. The path for the game, gamePath, is the selected path from the dialog and
Game. The classPath is the gamePath and Classes. The itemPath is the gamePath and Items. I then
check to see if gamePath exists. If it does I throw an exception saying that a game already exists in
that directory. I only want to have one game per directory. I then call the CreateDirectory method of
the Directory class to create the directories. Each sub-item type will be stored in a directory of its own
under the itemPath directory. The rolePlayingGame field is set to the RolePlayingGame property of
the new game dialog. I then call the Serialize<T> method to serialize the rolePlayingGame field. As
you can see I specify RolePlayingGame for T. For the file name I use the gamePath and \Game.xml.
If there was an exception I catch it and display it in a message box and exit the method. If the game
was created successfully I set the Enabled property of the class and item menu items.

There is a bit of a dependency here. Items require that you have the classes that are allowed to use the
item. So in order to code the item forms you need to code the forms dealing with character classes first.
Right click FormClasses and select View Code. I'm going to update the event handler for the click

event of btnAdd. Change the code for btnAdd_Click to the following. Add the AddEntity method to
the Method Region.

void btnAdd_Click(object sender, EventArgs e)
{
 using (FormEntityData frmEntityData = new FormEntityData())
 {
 frmEntityData.ShowDialog();

 if (frmEntityData.EntityData != null)
 {
 AddEntity(frmEntityData.EntityData);
 }
 }
}

private void AddEntity(EntityData entityData)
{
 if (FormDetails.EntityDataManager.EntityData.ContainsKey(entityData.EntityName))
 {
 DialogResult result = MessageBox.Show(
 entityData.EntityName + " already exists. Do you want to overwrite it?",
 "Existing Character Class",
 MessageBoxButtons.YesNo);

 if (result == DialogResult.No)
 return;

 FormDetails.EntityDataManager.EntityData[entityData.EntityName] = entityData;

 FillListBox();
 return;
 }

 lbDetails.Items.Add(entityData.ToString());

 FormDetails.EntityDataManager.EntityData.Add(
 entityData.EntityName,
 entityData);
}

The event handler creates a new form inside of a using statement so it will be disposed of when the
code exits the block of code. I call the ShowDialog method of the form to display it. If the EntityData
property of the form is not null I call the AddEntity method passing in the EntityData property of the
form.

The AddEntity data method will add the EntityData adds the new EntityData object to lbDetails and
the the EntityDataManager on FormDetails. If there exists an EntityData object with the same name
as the new one and you try and add it an exception will be thrown. So, there is an if statement that
checks to see if the key is in the dictionary. If it is I display a message box stating that there is already
an entry and if the user wants to overwrite it. If they select No I exit the method. If they want to
overwrite it I assign the new EntityData object to that key value. I call the method FillListBox to refill
the list box with the EntityData objects. I then exit the method. If there wasn't an existing EntityData
object I add it to the list box and add it to the EntityDataManager.

I'm going to code saving games next. I believe that you should be able to write out data before trying to
read it in. The first step is to add code to the saveGameMenuToolStripItem_Click event handler.
Change the code for that method to the following.

void saveGameToolStripMenuItem_Click(object sender, EventArgs e)

{
 if (rolePlayingGame != null)
 {
 try
 {
 XnaSerializer.Serialize<RolePlayingGame>(gamePath + @"\Game.xml", rolePlayingGame);
 FormDetails.WriteEntityData();
 FormDetails.WriteItemData();
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.ToString(), "Error saving game.");
 }
 }
}

I check to see if rolePlayingGame is not null. If it is null then there is nothing to save. If it is not then
there is a try-catch block that tries to save the game. I first use the Serialize<T> method to write out
the rolePlayingGame field. I then call static methods that I added to FormDetails for writing out the
values in the EntityDataManager and the ItemManager. If an exception was thrown I display a
message box with the error.

The WriteEntityData and WriteItemData methods write out the data for the appropriate type. Add
the following methods to the Method Region of FormDetails.

public static void WriteEntityData()
{
 foreach (string s in EntityDataManager.EntityData.Keys)
 {
 XnaSerializer.Serialize<EntityData>(
 FormMain.ClassPath + @"\" + s + ".xml",
 EntityDataManager.EntityData[s]);
 }
}

public static void WriteItemData()
{
 foreach (string s in ItemManager.ArmorData.Keys)
 {
 XnaSerializer.Serialize<ArmorData>(
 FormMain.ItemPath + @"\Armor\" + s + ".xml",
 ItemManager.ArmorData[s]);
 }

 foreach (string s in ItemManager.ShieldData.Keys)
 {
 XnaSerializer.Serialize<ShieldData>(
 FormMain.ItemPath + @"\Shield\" + s + ".xml",
 ItemManager.ShieldData[s]);
 }

 foreach (string s in ItemManager.WeaponData.Keys)
 {
 XnaSerializer.Serialize<WeaponData>(
 FormMain.ItemPath + @"\Weapon\" + s + ".xml",
 ItemManager.WeaponData[s]);
 }
}

The first method, WriteEntityData, loops through all of the keys in the EntityData dictionary in the
EntityDataManager class. Inside the loop I call the Serialize<T> method of the XnaSerializer class.
For the file name I use the static ClassPath property of FormMain, add a \ to place it in that directory,
add the name of the EntityData, and an xml extension. The WriteItemData method works basically

the same way. The difference is where they are written. Armor is written to the Armor sub-directory of
the Items folder, shields to Shield, and weapons to Weapon. As more classes are added to the game
you just add in methods to write them out.

Opening a game will require a little more work than writing it out. The way I decided to handle reading
in a game is to display a FolderBrowserDialog to allow the user to browse to the folder that holds
their game. From there I try and open the game. Change the openGameToolMenuStripItem_Click
method to the following and add the methods OpenGame and PrepareForms.

void openGameToolStripMenuItem_Click(object sender, EventArgs e)
{
 FolderBrowserDialog folderDialog = new FolderBrowserDialog();

 folderDialog.Description = "Select Game folder";
 folderDialog.SelectedPath = Application.StartupPath;

 bool tryAgain = false;

 do
 {
 DialogResult folderResult = folderDialog.ShowDialog();
 DialogResult msgBoxResult;

 if (folderResult == DialogResult.OK)
 {
 if (File.Exists(folderDialog.SelectedPath + @"\Game\Game.xml"))
 {
 try
 {
 OpenGame(folderDialog.SelectedPath);
 tryAgain = false;
 }
 catch (Exception ex)
 {
 msgBoxResult = MessageBox.Show(
 ex.ToString(),
 "Error opening game.",
 MessageBoxButtons.RetryCancel);

 if (msgBoxResult == DialogResult.Cancel)
 tryAgain = false;
 else if (msgBoxResult == DialogResult.Retry)
 tryAgain = true;
 }
 }
 else
 {

 msgBoxResult = MessageBox.Show(
 "Game not found, try again?",
 "Game does not exist",
 MessageBoxButtons.RetryCancel);

 if (msgBoxResult == DialogResult.Cancel)
 tryAgain = false;
 else if (msgBoxResult == DialogResult.Retry)
 tryAgain = true;
 }
 }
 } while (tryAgain);
}

private void OpenGame(string path)
{
 gamePath = Path.Combine(path, "Game");
 classPath = Path.Combine(gamePath, "Classes");

 itemPath = Path.Combine(gamePath, "Items");

 rolePlayingGame = XnaSerializer.Deserialize<RolePlayingGame>(
 gamePath + @"\Game.xml");

 FormDetails.ReadEntityData();
 FormDetails.ReadItemData();

 PrepareForms();
}

private void PrepareForms()
{
 if (frmClasses == null)
 {
 frmClasses = new FormClasses();
 frmClasses.MdiParent = this;
 }

 frmClasses.FillListBox();

 if (frmArmor == null)
 {
 frmArmor = new FormArmor();
 frmArmor.MdiParent = this;
 }

 frmArmor.FillListBox();

 if (frmShield == null)
 {
 frmShield = new FormShield();
 frmShield.MdiParent = this;
 }

 frmShield.FillListBox();

 if (frmWeapon == null)
 {
 frmWeapon = new FormWeapon();
 frmWeapon.MdiParent = this;
 }

 frmWeapon.FillListBox();

 classesToolStripMenuItem.Enabled = true;
 itemsToolStripMenuItem.Enabled = true;
}

The openGameToolStripMenuItem method first creates a FolderBrowserDialog object and sets the
Description property to Select Game folder. I also set the SelectedPath to the folder the application
started in using the StartUpPath property of the Application class. There is a bool variable that will
determine if the user would like to try again if there is an error opening the game. It is set to false
initially.

I did it in a do-while loop instead of a while loop as you know the loop needs to go through at least
once. There are two DialogResult variables inside of the loop. folderResult holds the result of the
ShowDialog method of the FolderBrowserDialog object. msgResult holds the result of any message
boxes displayed. There is an if statement to check if folderResult is DialogResult.OK. Inside that if
statement there is an if statement that checks to see if Game.xml exists in the Game folder of the
selected folder. Inside that if statement there is a try-catch block where I try to actually open the game.
In the try part I call the OpenGame method and set tryAgain to false because opening the game
worked. In the catch part I capture the result of a message box. I set the buttons for the message box so

they are Retry and Cancel. If the result is Cancel I set tryAgain to false as the user doesn't want to try
again. If it is Retry I set tryAgain to true.

In the else part of the if statement that checked if a game exits I capture the result of a message box
similar to the previous one. I then do the same action. If Cancel is select tryAgain is set to false and
true if Retry was selected.

The OpenGame method is where I actually try and read in the data for the game. I first create the paths
to read data to like I did when I created a new game. I then deserialize the Game.xml file into the
rolePlayingGame field. I call the ReadEntityData and ReadItemData methods of FormDetails to
read in the entity data and item data. I then call PrepareForms to prepare the forms.

In the PrepareForms method I check if each of the forms is null. If it is null I create a new instance
and set the MdiParent property to this, the current form. I then call the FillListBox method on the
form to fill the list box with the data for that form.

You need to add two static methods to FormDetails, ReadEntityData and ReadItemData, to read in
the data. You also need to add a using statement for the System.IO name space.

using System.IO;

public static void ReadEntityData()
{
 entityDataManager = new EntityDataManager();

 string[] fileNames = Directory.GetFiles(FormMain.ClassPath, "*.xml");

 foreach (string s in fileNames)
 {
 EntityData entityData = XnaSerializer.Deserialize<EntityData>(s);
 entityDataManager.EntityData.Add(entityData.EntityName, entityData);
 }
}

public static void ReadItemData()
{
 itemManager = new ItemDataManager();

 string[] fileNames = Directory.GetFiles(
 Path.Combine(FormMain.ItemPath, "Armor"),
 "*.xml");

 foreach (string s in fileNames)
 {
 ArmorData armorData = XnaSerializer.Deserialize<ArmorData>(s);
 itemManager.ArmorData.Add(armorData.Name, armorData);
 }

 fileNames = Directory.GetFiles(
 Path.Combine(FormMain.ItemPath, "Shield"),
 "*.xml");

 foreach (string s in fileNames)
 {
 ShieldData shieldData = XnaSerializer.Deserialize<ShieldData>(s);
 itemManager.ShieldData.Add(shieldData.Name, shieldData);
 }

 fileNames = Directory.GetFiles(
 Path.Combine(FormMain.ItemPath, "Weapon"),
 "*.xml");

 foreach (string s in fileNames)
 {
 WeaponData weaponData = XnaSerializer.Deserialize<WeaponData>(s);
 itemManager.WeaponData.Add(weaponData.Name, weaponData);
 }

}

To read in data you need a file name of the file you want to read in. I have each type of data in a folder
of its own. I use the GetFiles method of the Directory class to get all of the files in that directory that
returns an array of strings with the file names. In a foreach loop I iterate over all of the items in the
array of tile names. Inside of the foreach loop there is a variable of the type of data I want to read in. I
use the Deserialize<T> method of the XnaSerializer class to deserialize the file into the variable. I
then add the object to the manager class.

I think that this is more than enough for this tutorial. The editors are coming along nicely but I think
you deserve a break from them. In the next tutorial I will move back to the game instead of the editors.
I encourage you to visit the news page of my site, XNA Game Programming Adventures , for the latest
news on my tutorials.

Good luck in your game programming adventures!

Jamie McMahon

http://xnagpa.net/news.html
http://xnagpa.net/news.html

