XNA 4.0 RPG Tutorials
Part 11b

Game Editors

I'm writing these tutorials for the new XNA 4.0 framework. The tutorials will make more sense if they
are read in order. You can find the list of tutorials on the XNA 4.0 RPG tutorials page of my web site. |
will be making my version of the project available for download at the end of each tutorial. It will be
included on the page that links to the tutorials.

I'm going to be continuing on with game editors in this tutorial. Since I've moved to a dynamic class
system a few updates need to be made to class in the ItemClasses of the RpgLibrary project. They
were using Type values for allowable classes. Instead I can use string values. The classes need to be

updated to use string instead of Type. The code for the Baseltem, Weapon, Armor, and Shield classes
follows next.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace RpglLibrary.ItemClasses
{
public enum Hands { One, Two }

o

public enum ArmorLocation { Body, Head, Hands, Feet }

public abstract class Baseltem
{

#region Field Region
protected List<string> allowableClasses = new List<string>();

string name;
string type;
int price;
float weight;
bool equipped;

#endregion
#region Property Region

public List<string> AllowableClasses
{
get { return allowableClasses; }
protected set { allowableClasses = value; }

}

public string Type
{

get { return type; }

protected set { type = value; }
}

public string Name

http://xnagpa.net/xnarpg4tutorials.html

return weapon;

}

public override string ToString ()

{

"

string weaponString = base.ToString() + ", ";
weaponString += NumberHands.ToString() + ", "
weaponString += AttackValue.ToString() + ", "
weaponString += AttackModifier.ToString() + "
weaponString += DamageValue.ToString() + ", "
weaponString += DamageModifier.ToString() ;

Se N N N,
~

foreach (string s in allowableClasses)
weaponString += ", " + s;

return base.ToString() ;

}

#endregion

The next step is to add in items to the editor. First open the design view for FormMain by right
clicking it and selecting View Designer. Beside the Classes menu item add the following entry
&Items. Set the Enabled property to false. Under &Items you want to add & Weapons, &Armor, and
&Shield.

A lot of forms are going to use the same layout as FormClasses. So I'm going to create a master form
called FormDetails. Any form that has that layout can inherit from FormDetails instead of Form.
Right click the RpgEditor project in the solution explorer, select Add and then Windows Form. Name
this form FormDetails. Set the Size property of FormDetails to the size of FormClasses. Go back to
the design view of FormClasses. While holding down the Ctrl key click on the Menu Strip, List Box,
and the three Buttons. The form should look like this.

: o= Character Classes = || == @

Load Save

lbClasses

" Add " Edit ::3 Delete E

Now, copy the controls by pressing Ctrl-C. Switch to FormDetails and press Ctrl-V to paste the
controls onto the form. Click on the title bar of the form to deselect the other controls. Rename

IbClasses to IbDetails. Set the Anchor property of IbDetails to Top, Left. Click on the arrow pointing
at FormDetails to expand the entries under it. Bring up the code for FormDetails.Designer.cs by right
clicking it and selecting View Code. Change these fields to protected rather than private.

protected
protected
protected
protected
protected
protected
protected

System.
System.
System.
System.
System.
System.
System.

Windows.
Windows.
Windows.
Windows.
Windows.
Windows.
Windows.

Forms
Forms
Forms

Forms.
.MenuStrip menuStripl;
Forms.
Forms.

Forms

.Button btnDelete;
.Button btnEdit;
.Button btnAdd;

ListBox lbDetails;

ToolStripMenultem loadToolStripMenultem;
ToolStripMenultem saveToolStripMenultem;

There are two more things I want to do before leaving the details form. I want to add a static protected
field for an ItemManager. I also want to move the EntityDataManager from FormClasses to
FormDetails. This way they will be available to any child form that needs to work with items and
entity data. As the game progresses there will be more manager classes that will be needed. Change the
code of FormDetails to the following.

using System;

using System.
using System.
using System.
using System.
using System.
using System.
using System.

using Rpglibrary.ItemClasses;
using Rpglibrary.CharacterClasses;

namespace RpgEditor

{

Collections.Generic;
ComponentModel;
Data;
Drawing;
Ling;
Text;
Windows.Forms;

public partial class FormDetails : Form

{

#region Field Region

protected static ItemManager ItemManager;
protected static EntityDataManager EntityDataManager;

#endregion

#region Property Region

#endregion

#region Constructor Region

public FormDetails ()

{

}

InitializeComponent () ;

if (FormDetails.ItemManager == null)

ItemManager =

new ItemManager();

if (FormDetails.EntityDataManager == null)

#endregion

EntityDataManager = new EntityDataManager ();

The constructor checks to see if the fields are null. If they are null it creates a new instance of the
fields. Since the fields are static you can't reference them using this. You need to reference them using
the class name.

Go to the Design View of FormClasses by right clicking it in the solution explorer and selecting View
Designer. Remove all of the controls that were on the form. Right click FormClasses again and select
View Code to bring up the code for the form. Change the code for FormClasses to the following.

void btnDelete Click(object sender, EventArgs e)
{
}

#endregion

The changes are that I now inherit from FormDetails instead of Form, the EntityDataManager field
was removed form the class, and in the Click event handler of btnAdd I use IbDetails instead of
IbClasses. If you go back to the design view of FormClasses all of the controls should be there with
little blue arrows in the top corner. Set the Anchor property of IbDetails to Top, Left, Bottom, Right.

I'm going to add in the forms for weapons, armor, and shields now. Right click the RpgEditor solution,
select Add and then Windows Form. Call this new form FormWeapon. Repeat the process and name
the new forms FormShield and FormArmor. Set the Text property of FormWeapon to Weapons. For
FormShield set the Text property to Shield and for FormArmor set Text to Armor. Make each of the
forms the size of your FormDetails. Set the Anchor property of IbDetails on all of the forms to Top,
Left, Bottom, Right. I added in code skeletons for each of the forms as well. The code follows next in
the following order: FormWeapon, FormShield, and FormArmor.

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Windows.Forms;

namespace RpgEditor

{

public partial class FormWeapon : FormDetails
{

#region Field Region

#endregion

#region Property Region
fendregion

#region Constructor Region

public FormWeapon ()
{

InitializeComponent () ;

loadToolStripMenultem.Click += new EventHandler (loadToolStripMenultem Click);

saveToolStripMenultem.Click += new EventHandler (saveToolStripMenultem Click);

btnAdd.Click += new EventHandler (btnAdd Click);
btnEdit.Click += new EventHandler (btnEdit Click);
btnDelete.Click += new EventHandler (btnDelete Click):;

}

#endregion

#region Menu Item Event Handler Region

void loadToolStripMenultem Click(object sender, EventArgs e)

{
}

void btnAdd Click(object sender, EventArgs e)
{
}

void btnEdit Click(object sender, EventArgs e)
{
}

void btnDelete Click(object sender, EventArgs e)
{
}

#endregion

}

I'm going to add some details forms for specific item types. Right click the RpgEditor project, select
Add and then Windows Form. Name this new form FormWeaponDetails. My finished form looked
like below. Set its Text property to Weapon Details and its FormBorderStyle to FixedDialog.

rWeapun Details E'@

Name: Character Classes:

Type: lbClasses lbAlowedClasses

Price:

W
R

Weight: |0.00 = |

Hands: - |

O
Cal

Attack Value:
Attack Modffier:

Damage Value:

Damage Modffier: | OK || Cancel |

There are a lot of controls on the form. First make your form bigger to hold all of the controls. Drag a
Label on and set its Text property to Name:. Drag a Text Box on to the form and position it beside the
Label. Set the Name property of the Text Box to tbName. Drag a Label onto the form and position it
under the Name: Label. Set the Text property to Type:. Drag a Text Box to the right of that Label. Set
its Name property to tbType. Add another label under the Type: Label and set its Text property to
Price:. Position a Masked Text Box to the right of that label. Resize it to match the other Text Boxes.
Set its Name property to mtbPrice and its Mask property to 00000. Drag another Label under the
Price: label and set its Text property to Weight:. Drag a Numeric Up Down beside that Label. Set its
Name property to nudWeight, the Decimal Places to 2. Resize it so it lines up with the other controls.
Drag a Label on and set the Text property to Hands:. Drag a Combo Box beside that and size it so that
it matches the other controls. Set its Name property to cboHands and the DropDownStyle to Drop
Down List. Drag another Label on and set its Text property to Attack Value: and a Masked Text Box
beside it and set its Name property to mthAttackValue. Resize the control so that it matches the others
and set its Mask property to 000. While holding down the ctrl key select that Label and Masked Text
Box. While still holding the ctrl key drag the controls down. That will replicated the controls. Set the
Text property of the label to Attack Modifier: and the Name property of the Masked Text Box to
mtbAttackModifier. Repeat the process twice more. For the first Label set its Text property to

Damage Value: and for the second Damage Modifier:. Set the Name property of the first Masked
Text Box to mtbDamageValue and the second to mtbDamageModifier.

Drag a Label and position it to the right of tbName. Set its Text property to Character Classes:. Drag
a List Box and position it under the Character Classes: Label. Make it longer so there is enough room
for a Button below it and set its Name property to IbClasses. Drag two buttons to the right of that List
Box. Position them sort of centered vertically. Set the Text property of the first Button to >> and the
Name property to btnMoveAllowed. Set the Text property of the second Button to << and the Name
property to btnRemoveAllowed. Drag a List Box and position it to the right of the two Buttons. Set
its size and position so that it matches IbClasses. Set its Name property to IbAllowedClasses. Drag
two more buttons and position them below the List Boxes. Set the Name property of the first Button to
btnOK and its Text property to OK. Set the Name property of the second to btnCancel and the Text
property to Cancel.

The next form to add is a form for the various types of armor in the game. Right click the RpgEditor
project, select Add and then Windows Form. Name this new form FormArmorDetails. Set the Text
property to Armor Details and the FormBorderStyle to FixedDialog. My form looked like below.

- ".

Armor Details = || = ER
MName: Character Classes: Allowed Classes:
Type: lbClasses |bAlowedClasses
Price:
Weight: |0.00 = | 2 |
AmorLocation: | = !

Defense Value:

Defense Modifier:

| QK | | Cancel |

T 1

Instead of adding all of the controls again, first make the form a big enough so that it will easily fit all
of the controls. Go back to the design view of FormWeaponDetail. Hold down the ctrl key and click
all of the controls except the Combo Box and the controls related attack. Press ctrl+C to copy the
controls. Go back to FormArmorDetail and press ctrl+V to paste the controls. Move them until they
fit nicely on the form. Drag a Label below the Weight label and set its Text property to Armor
Location:. Drag a Combo Box box beside that Label. Set its Name property to choArmorLocation
and the DropDownStyle to DropDownList. Drag a Label below Armor Location: and set its Text
property to Defense Value:. Drag a Masked Text Box beside it and set its Mask property to 000 and
its Name property to mtbDefenseValue. While holding down the ctrl key select the Label and
Masked Text Box you just added. Still holding down the ctrl key drag them down to replicate them.
Set the Text property of the Label to Defense Modifier:. For the Masked Text Box set the Name
property to mtbDefenseModifier.

That just leaves the the form for shields. Right click the RpgEditor, select Add and then Windows
Form. Name this new form FormShieldDetail. Set the Text property of the form to Shield Details and

the FormBorderStyle to FixedDialog

. My finished form is next.

Shield Details

Mame:
Type:
Price:

Weight: |0.00 =

Defense Value:

Defense Modffier:

Character Classes:

lbClasses

5
LT

e
Y

(= 5 S

Allowed Classes:

lbAlowedClasses

oK

Cancel

There is no need to add all of the controls to this form as well. Switch to the design view of

FormArmorDetail. You can either click on all of the controls while holding down the ctrl key or you
can drag a rectangle around all of the controls. Once you have all of the controls selected press ctrl+C
to copy them. Go back to the design view of FormShieldDetail and press ctrl+V to paste the controls.

Click on the Armor Location: Label and the cbhoArmorLocation Combo Box and delete them.

This tutorial is getting long so I'm just going to add in some basic logic to the forms. I will start with

the code for FormMain. Right click FormMain in the solution explorer and select View Code.
Change the code to the following. This is the new code for that form.

using
using
using
using
using
using
using
using

using
using
using

System;
System.
System.
System.
System.
System.
System.
System.

Collections.Generic;
ComponentModel;
Data;

Drawing;

Ling;

Text;

Windows.Forms;

RpgLibrary;
Rpglibrary.CharacterClasses;
Rpglibrary.ItemClasses;

namespace RpgEditor

{

public partial class FormMain : Form

{

#region Field Region

RolePlayingGame rolePlayingGame;
FormClasses frmClasses;
FormArmor frmArmor;

FormShield frmShield;

FormWeapon frmWeapon;

#endregion

#region Property Region
#endregion

frmArmor.Show () ;

}

void shieldToolStripMenuItem Click (object sender, EventArgs e)
{
if (frmShield == null)
{
frmShield = new FormShield();
frmShield.MdiParent = this;
}

frmShield.Show() ;
}

void weaponToolStripMenulItem Click (object sender, EventArgs e)
{
if (frmWeapon == null)
{
frmWeapon = new FormWeapon();

frmWeapon.MdiParent = this;

}

frmWeapon.Show () ;

}
#endregion

#region Method Region
#endregion

There are three new fields. One for each of the forms that list all of the different item types. In the
constructor I wire event handlers for the armorToolStripMenultem, shieldToolStripMenultem, and
weaponToolStripMenultem Click events. The handler for newGameToolStripMenultem's Click
event if there was a RolePlayingGame object on the form displayed I set the Enabled property of
itemsToolStripMenultem to true so it is enabled. In the event handler of the Click events of the menu
items I check to see if the appropriate form is null. If it is null I create it an instance and set the
MdiParent property to this, the current instance. Outside of the if statement I call the Show method of
the form rather than ShowDialog.

I will add some basic code to each of the detail forms. What I did was add a field for the type of item
and a property to expose it. I also handle the click events of the OK and Cancel buttons. Change the
code of FormArmorDetails, FormShieldDetails, and FormWeaponDetails to the following.

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Windows.Forms;

using RpgLibrary.ItemClasses;

namespace RpgEditor

{
public partial class FormArmorDetails : Form
{

#region Field Region

Armor armor = null;

I'm going to end this tutorial here as it is rather on the long side. I want to try and keep them to a
reasonable length so that you don't have too much to digest at once. I encourage you to visit the news
page of my site, XNA Game Programming Adventures, for the latest news on my tutorials.

Good luck in your game programming adventures!

Jamie McMahon

http://xnagpa.net/news.html
http://xnagpa.net/news.html

