
XNA 4.0 RPG Tutorials

Part 11a

Game Editors

I'm writing these tutorials for the new XNA 4.0 framework. The tutorials will make more sense if they 
are read in order. You can find the list of tutorials on the XNA 4.0 RPG tutorials page of my web site. I 
will be making my version of the project available for download at the end of each tutorial. It will be 
included on the page that links to the tutorials.

I had started a new tutorial that I was adding in editors for the game. I realized when I was about half 
done that I needed to revamp a few things. They are minor things but changing them now means that 
they won't have to be changed down the road. After changing a few things I will then work on the 
editors.

First thing I think is it will be better to be able to read in character classes at run time rather than have 
static character classes. The ability is already there, I just need to make a few quick adjustments. First, 
right click the Fighter, Thief, Priest, and Wizard classes in the CharacterClasses folder of the 
RpgLibrary project and select Delete. You are not going to need them. I am going to add a manager 
class to the RpgLibrary to manage the entity types. Right click the RpgLibrary, select Add and then 
Class. Name this class EntityDataManager. This is the code for the EntityDataManager class.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.CharacterClasses
{
    public class EntityDataManager
    {
        #region Field Region

        readonly Dictionary<string, EntityData> entityData = new Dictionary<string, 
EntityData>();

        #endregion

        #region Property Region

        public Dictionary<string, EntityData> EntityData
        {
            get { return entityData; }
        }

        #endregion

        #region Constructor Region
        #endregion

        #region Method Region
        #endregion
    }

http://xnagpa.net/xnarpg4tutorials.html


}

A fairly straight forward class. There is one field, entityData, that is marked readonly to hold all of the 
EntityData objects in the game.  This modifier is like the const modifier. The difference is you can 
assign it a value in the class declaration or in the constructor of the class. This doesn't mean that the 
field can't be modified though. It just means that there can't be an assignment to the field. You can 
access the field using methods and properties, like adding an item to the list using the Add method. The 
entityData field is a Dictionary<string, EntityData>. I used a dictionary as EntityData instances 
should have unique names, as they are names for character classes. There is a property to expose the 
field.

I'm going to make an update to the EntityData class. I'm going to remove the static methods that I 
added and add in an override of the ToString method. I'm also going to add in a Clone method to clone 
an EntityData class. The way I'm going to do the editors you are not going to need the static methods. 
I'm going to do it in such a way that content will be written to an XML file. You can then read in this 
XML file using the Content Pipeline and reflection. Change the EntityData class to the following.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.CharacterClasses
{
    public class EntityData
    {
        #region Field Region

        public string EntityName;

        public int Strength;
        public int Dexterity;
        public int Cunning;
        public int Willpower;
        public int Magic;
        public int Constitution;

        public string HealthFormula;
        public string StaminaFormula;
        public string MagicFormula;

        #endregion

        #region Constructor Region
        
        private EntityData()
        {
        }

        public EntityData(
            string entityName, 
            int strength, 
            int dexterity, 
            int cunning, 
            int willpower, 
            int magic, 
            int constitution, 
            string health, 
            string stamina, 
            string mana)
        {
            EntityName = entityName;
            Strength = strength;



            Dexterity = dexterity;
            Cunning = cunning;
            Willpower = willpower;
            Cunning = cunning;
            Willpower = willpower;
            Magic = magic;
            Constitution = constitution;
            HealthFormula = health;
            StaminaFormula = stamina;
            MagicFormula = mana;
        }

        #endregion

        #region Method Region

        public override string ToString()
        {
            string toString = "Name = " + EntityName + ", ";
            toString += "Strength = " + Strength.ToString() + ", ";
            toString += "Dexterity = " + Dexterity.ToString() + ", ";
            toString += "Cunning = " + Cunning.ToString() + ", ";
            toString += "Willpower = " + Willpower.ToString() + ", ";
            toString += "Magic = " + Magic.ToString() + ", ";
            toString += "Constitution = " + Constitution.ToString() + ", ";
            toString += "Health Formula = " + HealthFormula + ", ";
            toString += "Stamina Formula = " + StaminaFormula + ", ";
            toString += "Magic Formula = " + MagicFormula;

            return toString;
        }

        public object Clone()
        {
            EntityData data = new EntityData();

            data.EntityName = this.EntityName;
            data.Strength = this.Strength;
            data.Dexterity = this.Dexterity;
            data.Cunning = this.Cunning;
            data.Willpower = this.Willpower;
            data.Magic = this.Magic;
            data.Constitution = this.Constitution;
            data.HealthFormula = this.HealthFormula;
            data.StaminaFormula = this.StaminaFormula;
            data.MagicFormula = this.MagicFormula;

            return data;
        }

        #endregion
    }
}

The ToString and an equals sign, another space and then the field. For all fields except the last I also 
add a comma and a space. I didn't implement the ICloneable interface this time. You will also want to 
change your Animation class to not use the ICloneable interface. In the .NET Compact version, which 
the Xbox 360 uses, you will get a compile time error that ICloneable is not available due to its 
protection level. You will still want to have a Clone method though, just don't use the interface to do it. 
The Clone method uses the private constructor to create a new instance of EntityData. It then sets all 
of the fields of the instance using the current object.

Before I get to the editors I want to update the Entity class. Instead of it being an abstract class I want 
it to be a sealed class. A sealed class is a class that can't be inherited from. I also want to add in an 
enumeration for different types of entities. Even though there is a lot of code I don't think there is 



anything that truly needs to be explained. Things that were protected were made private. A few fields 
were added and properties to expose them. The public constructor now takes a string for the name, an 
EntityData that defines the type of entity, an EntityGender for the gender of the entity, and an 
EntityType for the type of entity. When I talk about types of entities there will be four distinct groups. 
There are characters, like the player's characters, NPCs for the player to interact with, monsters and 
creatures. I could have lumped all enemies the player will face into one category, monster, but I though 
there may be instances where it will be useful to have animals, like giant spiders or wolves. This is the 
updated Entity class.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.CharacterClasses
{
    public enum EntityGender { Male, Female, Unknown }
    public enum EntityType { Character, NPC, Monster, Creature }

    public sealed class Entity
    {
        #region Vital Field and Property Region

        private string entityName;
        private string entityClass;
        private EntityType entityType;
        private EntityGender gender;

        public string EntityName
        {
            get { return entityName; }
            private set { entityName = value; }
        }

        public string EntityClass
        {
            get { return entityClass; }
            private set { entityClass = value; }
        }

        public EntityType EntityType
        {
            get { return entityType; }
            private set { entityType = value; }
        }

        public EntityGender Gender
        {
            get { return gender; }
            private set { gender = value; }
        }

        #endregion

        #region Basic Attribute and Property Region

        private int strength;
        private int dexterity;
        private int cunning;
        private int willpower;
        private int magic;
        private int constitution;

        private int strengthModifier;
        private int dexterityModifier;
        private int cunningModifier;



        private int willpowerModifier;
        private int magicModifier;
        private int constitutionModifier;

        public int Strength
        {
            get { return strength + strengthModifier; }
            private set { strength = value; }
        }

        public int Dexterity
        {
            get { return dexterity + dexterityModifier; }
            private set { dexterity = value; }
        }

        public int Cunning
        {
            get { return cunning + cunningModifier; }
            private set { cunning = value; }
        }

        public int Willpower
        {
            get { return willpower + willpowerModifier; }
            private set { willpower = value; }
        }

        public int Magic
        {
            get { return magic + magicModifier; }
            private set { magic = value; }
        }

        public int Constitution
        {
            get { return constitution + constitutionModifier; }
            private set { constitution = value; }
        }

        #endregion

        #region Calculated Attribute Field and Property Region

        private AttributePair health;
        private AttributePair stamina;
        private AttributePair mana;

        public AttributePair Health
        {
            get { return health; }
        }

        public AttributePair Stamina
        {
            get { return stamina; }
        }

        public AttributePair Mana
        {
            get { return mana; }
        }

        private int attack;
        private int damage;
        private int defense;

        #endregion



        #region Level Field and Property Region

        private int level;
        private long experience;

        public int Level
        {
            get { return level; }
            private set { level = value; }
        }

        public long Experience
        {
            get { return experience; }
            private set { experience = value; }
        }

        #endregion

        #region Constructor Region

        private Entity()
        {
            Strength = 0;
            Dexterity = 0;
            Cunning = 0;
            Willpower = 0;
            Magic = 0;
            Constitution = 0;

            health = new AttributePair(0);
            stamina = new AttributePair(0);
            mana = new AttributePair(0);
        }

        public Entity(string name, EntityData entityData, EntityGender gender, EntityType 
entityType)
        {
            EntityName = name;
            EntityClass = entityData.EntityName;
            Gender = gender;
            EntityType = entityType;
            Strength = entityData.Strength;
            Dexterity = entityData.Dexterity;
            Cunning = entityData.Cunning;
            Willpower = entityData.Willpower;
            Magic = entityData.Magic;
            Constitution = entityData.Constitution;

            health = new AttributePair(0);
            stamina = new AttributePair(0);
            mana = new AttributePair(0);
        }

        #endregion
    }
}

The next step is to add in the editor. Make sure that all open files are saved for this step. The next step 
is to add a project for the editors. The editors will do the serializing and deserializing of your content. 
You can deserialize your objects from the editor so that you don't have to read in your files and parse 
them manually. Right click the solution in the solution explorer. Select Add and then New Project. 
Select a Windows Forms project from the C# list and name this new project RpgEditor. Now make 
sure all open files are saved. Right click the RpgEditor project and select Properties to bring up the 



properties dialog for the project. Under the Application tab set the Target framework to .NET 
Framework 4 and not .NET Framework 4 Client Profile like below. Right click the RpgEditor and 
select Add Reference. Find the  Microsoft.Xna.Framework.Content.Pipeline reference and add it. 
Also add a reference to the Microsoft.Xna.Framework name space.

Now you need to reference your two libraries. Right click the RpgEditor project and select Add 
Reference. From the Projects tab select the RpgLibrary and XRpgLibrary entries. Right click the 
Form1 class in the solution explorer and select Delete to rename. Rename it to FormMain and in the 
dialog box that pops up choose to rename the code references from Form1 to FormMain. Right click 
the RpgEditor again, select Add and then Class. Name this new class XnaSerializer. The code for the 
class follows next.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;
using System.Xml;

using Microsoft.Xna.Framework.Content.Pipeline.Serialization.Intermediate;

namespace RpgEditor
{
    static class XnaSerializer
    {
        public static void Serialize<T>(string filename, T data)
        {
            XmlWriterSettings settings = new XmlWriterSettings();
            settings.Indent = true;

            using (XmlWriter writer = XmlWriter.Create(filename, settings))
            {
                IntermediateSerializer.Serialize<T>(writer, data, null);
            }
        }

        public static T Deserialize<T>(string filename)
        {
            T data;

            using (FileStream stream = new FileStream(filename, FileMode.Open))
            {
                using (XmlReader reader = XmlReader.Create(stream))
                {
                    data = IntermediateSerializer.Deserialize<T>(reader, null);
                }
            }

            return data;
        }
    }
}



That looks like a whole pile of ugly but once it is explained I don't think you will find it that bad. First 
off I added using statements for the System.IO and System.Xml name spaces because I use class from 
both of them. There is also a using statement for an XNA name space. That is the reason I added the 
reference to the Content Pipeline. I needed access to the IntermediateSerializer class. With this class 
you can write out XML content in a way that the Content Pipeline can read it in using reflection as I 
mentioned earlier. This class is a static class. You never need to create an instance of this class. You use 
the two static methods to serialize and deserialize objects. They are generic methods, like the Load 
method of the ContentManager class. You can specify what type you want to use. This will prevent 
the need to write methods to serialize and deserialize every class you want to write out and read in. You 
can just use the generic method and pass in the type you want to use. You will see it in action in the 
editor.

The first method, Serialize<T>, is used to serialize the object into an XML document. It basically 
writes out the object in XML format. There maybe times when you don't want a field or property 
written. You can flag it with an attribute that will prevent it from being serialized. An example would 
be if you had a Texture2D field. You don't want to serialize that, just your other data.

The first step in serializing using the IntermediateSerializer class is to create an XmlWriterSettings 
object. You use this object to set the Indent property to true as you want items indented. Unlike using 
directives for name spaces a using statement that you find inside code automatically disposes of any 
disposable objects with the statement ends. In this case the XmlWriter will be disposed when the 
statement ends. Inside the using statement is why I ended up deciding to create generic methods. The 
Serialize method of the IntermediateSerializer class requires a type, T, like the Load method of the 
ContentManager. I can use the T from the generic method in the call to Serialize. The parameters that 
I pass to the Serialize method are an XML stream, the XmlWriter, the object to be serialized, and a 
reference path. You can pass in null for this if you don't want to use one.

The Deserialize<T> method returns an object of type T. It first has a local variable of type T that it can 
return. To use the XmlReader class to read in an XML file you need a stream for input. In a using 
statement I create a stream to open the file passed in as a parameter. Inside that code block there is 
another using statement that creates an XmlReader to read in the XML file. I then call the Deserialize 
method of the IntermediateSerializer class to deserialize the document. I then return the object that 
was deserialized. It would be a good idea to check for exceptions such as the XML file was of the 
wrong type or the file didn't exist or the file could not be created. That would work well in the editor 
though and I will do that there.

I want to add a class to the RpgLibrary before moving on to the editor. This class will describe your 
games. It is used more for the editor than anything. Right click the RpgLibrary project, select Add and 
then Class. Name this class RolePlayingGame. This is the code.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary
{
    public class RolePlayingGame
    {
        #region Field Region



        string name;
        string description;

        #endregion

        #region Property Region

        public string Name
        {
            get { return name; }
            set { name = value; }
        }

        public string Description
        {
            get { return description; }
            set { description = value; }
        }

        #endregion

        #region Constructor Region

        public RolePlayingGame(string name, string description)
        {
            Name = name;
            Description = description;
        }

        #endregion
    }
}

There are two fields in the class. One for the name of the game and the other for a description of the 
game. There are public properties to expose the fields. The constructor of the class takes a name and 
description and sets the fields using the properties. This class will be fleshed out more as we go.

Designing forms is never easily done using text. I will show you a picture of what my finished forms 
look like in Visual C# and what controls were added. Open the designer view of FormMain by right 
clicking it and selecting View Designer. This is what my finished form looked like in the designer.



I first made the form a little bigger. I then I dragged on was a Menu Strip control. In the first entry of 
the Menu Strip type &Game. The & before Game means that if the user presses ALT+G it will open 
that menu. Under the Game add in four other entries: &New Game, &Open Game, &Save Game, -, 
and E&xit Game. Entering the -, minus sign, gives you a separator in your menu. Beside &Game you 
want to add &Classes. Set the Enabled property for this item to false. You now want to set a few 
property of FormMain. Set the IsMdiContainer property to true, the Text property to XNA Rpg 
Editor, and the StartUpPosition to CenterScreen. MDI is a way of having multiple children forms of 
a parent form. This way you can have multiple forms open like the form for creating character classes 
and a form for creating weapons and switch back and forth between them easily.

The next form I want to create is a form for creating a new game. Right click the RpgEditor project, 
select Add and then Windows Form. Name this new form FormNewGame. This is what my 
FormNewGame looked like in the designer.

First, make the form a little bigger to house all of the controls. Drag on a Label and set its Text 
property to Name:. Dragon on a second Label and set its Text property to Description:. Drag on a 
Text Box and position it beside the Name: Label. Set its Name property to tbName. Drag a second 
Text Box onto the form. Set its Name property to tbDescription and its Multiline property to true. 
Make it a little bigger to give the user more of an area to work with. Drag two buttons onto the form 
and position them under tbDescription. Set the Name of the first to btnOK, the Text property to OK 
and the DialogResult property to OK. Set the Name of the second to btnCancel, Text to Cancel, and 
DialogResult to Cancel. On the form itself set the Text property to New Game, Control Box to false, 
and FormBorderStyle to FixedDialog.

While this form is open might as well code the logic for it. Right click FormNewGame in the solution 
explorer and select View Code. Change the code for FormNewGame to the following.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;



using RpgLibrary;

namespace RpgEditor
{
    public partial class FormNewGame : Form
    {
        #region Field Region

        RolePlayingGame rpg;

        #endregion

        #region Property Region

        public RolePlayingGame RolePlayingGame
        {
            get { return rpg; }
        }

        #endregion

        #region Constructor Region

        public FormNewGame()
        {
            InitializeComponent();
            btnOK.Click += new EventHandler(btnOK_Click);
        }

        #endregion

        #region Event Handler Region

        void btnOK_Click(object sender, EventArgs e)
        {
            if (string.IsNullOrEmpty(tbName.Text) || string.IsNullOrEmpty(tbDescription.Text))
            {
                MessageBox.Show("You must enter a name and a description.", "Error");
                return;
            }

            rpg = new RolePlayingGame(tbName.Text, tbDescription.Text);

            this.Close();
        }

        #endregion
    }
}

There is a field of type RolePlayingGame to be constructed using the form and a public property to 
expose it as read only, get only. The constructor wires an event handler for the Click event of btnOK. 
The event handler checks to see if tbName or tbDescription have text in them. If they don't a message 
box is shown and the method exits. Because I set the DialogResult of btnOK to OK the form will 
close when btnOK is pressed. If both text boxes had values then I create a new RolePlayingGame 
object with their values and then close the form.

I'm going to add two forms for dealing with entity data, or character classes. The one form holds all of 
the character classes in the game. The second is use for creating new classes and editing character 
classes. Right click the RpgEditor project, select Add and then Windows Form. Name this new form 
FormClasses. What my form looked like in the designer is on the next page. To get started drag a 
Menu Strip onto the form and making the form a little bigger. You can set the Text property of the 
form to Character Classes. For the Menu Strip you can set the first item to &Load and the second 



item to &Save. Drag a List Box onto form and size it similarly to mine. You can also drag three 
Buttons onto the form positioning them under the List Box.

For the List Box set the following properties. Name is lbClasses, and Anchor property to Top, 
Bottom, Left, Right. Setting the Anchor property to that will have the list box change its size as you 
change the size of the form. For the first button set its Name property to btnAdd, Anchor property to 
Bottom, and its Text property to Add. The second button's Name, Anchor, and Text properties are 
btnEdit, Bottom, and Edit respectively. Set those same properties for the last to btnDelete, Bottom, 
and Delete.

The last form I'm going to add is the form for creating a new character class or editing an existing one. 
Right click the RpgEditor project, select Add and then Windows Form. Name this new form 
FormEntityData. What my form looked like is on the next page.

Make the form bigger so there is room for all of the controls. I then dragged 10 Label controls onto the 
form. Set the text properties of the labels to Name:, Strength:, Dexterity:, Cunning:, Willpower:, 
Magic:, Constitution:, Health Formula:, Stamina Formula:, and Mana Formula:. You will then 



drag a Text Box onto the form and position it beside the Name: label. Make it a little bigger and set the 
Name property to tbName. 

I next dragged a Masked Text Box onto the form. Set the Mask property to 00 which means the text 
box will only accept 2 digits. Set the Text property to 10 as well. Instead of having to set those 
properties 5 more times you can replicate the control. Select the control and while holding the Ctrl key 
drag the Masked Text Box below the other. Repeat the process until there is a masked text box beside 
the other attributes. Once you have all six set their Name properties to match the text of the label that 
they are across from: mtbStrength, mtbDexterity, mtbCunning, mtbWillpower, mtbMagic, and 
mtbConstitution.

You will want to drag a Text Box beside the remaining labels. Name them according to the label they 
are beside: tbHealth, tbStamina, and tbMana. The last two controls to drag onto the form are the 
buttons. Set the Name of the one to btnOK, and the Text property to OK. For the second button set the 
Name to btnCancel, the text to Cancel, and the DialogResult to Cancel. Click on the title bar of the 
form to bring up the properties of the form. Set the AcceptButton property to btnOK, the 
CancelButton property to btnCancel, FormBorderStyle to FixedDialog, and the Text property to 
Character Class.

I'm going to add in the logic for the form as there isn't a lot of code to it. Right click FormEntityData 
and select View Code. This is the code for that form.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using RpgLibrary.CharacterClasses;



namespace RpgEditor
{
    public partial class FormEntityData : Form
    {
        #region Field Region

        EntityData entityData = null;

        #endregion

        #region Property Region

        public EntityData EntityData
        {
            get { return entityData; }
            set { entityData = value; }
        }

        #endregion

        #region Constructor Region

        public FormEntityData()
        {
            InitializeComponent();
            this.Load += new EventHandler(FormEntityData_Load);
            btnOK.Click += new EventHandler(btnOK_Click);
            btnCancel.Click += new EventHandler(btnCancel_Click);
        }

        #endregion

        #region Event Handler Region

        void FormEntityData_Load(object sender, EventArgs e)
        {
            if (entityData != null)
            {
                tbName.Text = entityData.EntityName;
                mtbStrength.Text = entityData.Strength.ToString();
                mtbDexterity.Text = entityData.Dexterity.ToString();
                mtbCunning.Text = entityData.Cunning.ToString();
                mtbWillpower.Text = entityData.Willpower.ToString();
                mtbConstitution.Text = entityData.Constitution.ToString();
                tbHealth.Text = entityData.HealthFormula;
                tbStamina.Text = entityData.StaminaFormula;
                tbMana.Text = entityData.MagicFormula;
            }
        }

        void btnOK_Click(object sender, EventArgs e)
        {
            if (string.IsNullOrEmpty(tbName.Text) || string.IsNullOrEmpty(tbHealth.Text) ||
                string.IsNullOrEmpty(tbStamina.Text) || string.IsNullOrEmpty(tbMana.Text))
            {
                MessageBox.Show("Name, Health Formula, Stamina Formula and Mana Formula must have 
values.");                
                return;
            }

            int str = 0;
            int dex = 0;
            int cun = 0;
            int wil = 0;
            int mag = 0;
            int con = 0;

            if (!int.TryParse(mtbStrength.Text, out str))
            {



                MessageBox.Show("Strength must be numeric.");
                return;
            }

            if (!int.TryParse(mtbDexterity.Text, out dex))
            {
                MessageBox.Show("Dexterity must be numeric.");
                return;
            }

            if (!int.TryParse(mtbCunning.Text, out cun))
            {
                MessageBox.Show("Cunning must be numeric.");
                return;
            }

            if (!int.TryParse(mtbWillpower.Text, out wil))
            {
                MessageBox.Show("Willpower must be numeric.");
                return;
            }

            if (!int.TryParse(mtbMagic.Text, out mag))
            {
                MessageBox.Show("Magic must be numeric.");
                return;
            }

            if (!int.TryParse(mtbConstitution.Text, out con))
            {
                MessageBox.Show("Constitution must be numeric.");
                return;
            }

            entityData = new EntityData(
                tbName.Text,
                str,
                dex,
                cun,
                wil,
                mag,
                con,
                tbHealth.Text,
                tbStamina.Text,
                tbHealth.Text);

            this.Close();
        }

        void btnCancel_Click(object sender, EventArgs e)
        {
            entityData = null;
            this.Close();
        }

        #endregion
    }
}

I added in a using statement for the CharacterClasses name space of the RpgLibrary. I have a field 
entityData of type EntityData for the entity data being entered. There is also a public property to 
expose it to other forms.

In the constructor of the form I wire event handlers for the Load event of the form and the Click events 
of btnOK and btnCancel. In the Load event of the form I check to see entityData is not null. If it is 
not null I fill out the text boxes and masked text boxes with the appropriate fields from entityData.



The click event of btnOK checks to make sure that the Text properties of tbName, tbHealth, 
tbStamina, and tbMana have values. If they don't I display a message box and exit the method. There 
are then six local integer variables for the stats of EntityData. Next follows a series of if statements 
where I use the TryParse method of the int class to parse the Text property of the masked text boxes 
for the stats. Even though the mask only allows numeric values they can be empty and if you just use 
the Parse method that will generate an exception and your program will crash. If any of the TryParse 
calls fail I display a message box and exit the method. I then set the entityData field to a new instance 
using the values of the text boxes and local integer variables. Finally I close the form. In the Click 
event handler for btnCancel I set the entityData field to null. I then close the form.

I'm going to add in some basic logic for the FormClasses now. Right click FormClasses in the 
RpgEditor project and select View Code. Add the following code for FormClasses.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

using RpgLibrary.CharacterClasses;

namespace RpgEditor
{
    public partial class FormClasses : Form
    {
        #region Field Region

        EntityDataManager entityDataManager = new EntityDataManager();

        #endregion

        #region Constructor Region

        public FormClasses()
        {
            InitializeComponent();

            loadToolStripMenuItem.Click += new EventHandler(loadToolStripMenuItem_Click);
            saveToolStripMenuItem.Click += new EventHandler(saveToolStripMenuItem_Click);

            btnAdd.Click += new EventHandler(btnAdd_Click);
            btnEdit.Click += new EventHandler(btnEdit_Click);
            btnDelete.Click += new EventHandler(btnDelete_Click);
        }

        #endregion

        #region Menu Item Event Handler Region

        void loadToolStripMenuItem_Click(object sender, EventArgs e)
        {
        }

        void saveToolStripMenuItem_Click(object sender, EventArgs e)
        {
        }

        #endregion

        #region Button Event Handler Region



        void btnAdd_Click(object sender, EventArgs e)
        {
            using (FormEntityData frmEntityData = new FormEntityData())
            {
                frmEntityData.ShowDialog();

                if (frmEntityData.EntityData != null)
                {
                    lbClasses.Items.Add(frmEntityData.EntityData.ToString());
                }
            }
        }

        void btnEdit_Click(object sender, EventArgs e)
        {
        }

        void btnDelete_Click(object sender, EventArgs e)
        {            
        }

        #endregion
    }
}

There is an EntityDataManager field in this class because it will hold the different EntityData 
objects. In the constructor I wire the event handlers for the menu items and the buttons. I added some 
basic code to the btnAdd_Click event handler. There is a using statement that creates a new instance of 
FormEntityData so that when you are done with the form it will be disposed of. Inside I call the 
ShowDialog method of the form to display it as a modal form. That required the form to be closed 
before you can use the calling form again. I check to see if the EntityData property of the form is not 
null. If it is I add the EntityData object to the list box of EntityData objects. I will add in more 
functionality in another tutorial.

I'm also going to add a little logic to the FromMain. Right click FormMain and select View Code. 
Update the code for FormMain to the following.

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

using RpgLibrary;
using RpgLibrary.CharacterClasses;
using RpgLibrary.ItemClasses;

namespace RpgEditor
{
    public partial class FormMain : Form
    {
        #region Field Region

        RolePlayingGame rolePlayingGame;
        FormClasses frmClasses;

        #endregion

        #region Property Region
        #endregion



        #region Constructor Region

        public FormMain()
        {
            InitializeComponent();

            newGameToolStripMenuItem.Click += new EventHandler(newGameToolStripMenuItem_Click);
            openGameToolStripMenuItem.Click += new EventHandler(openGameToolStripMenuItem_Click);
            saveGameToolStripMenuItem.Click += new EventHandler(saveGameToolStripMenuItem_Click);
            exitToolStripMenuItem.Click += new EventHandler(exitToolStripMenuItem_Click);

            classesToolStripMenuItem.Click += new EventHandler(classesToolStripMenuItem_Click);
        }

        #endregion

        #region Menu Item Event Handler Region

        void newGameToolStripMenuItem_Click(object sender, EventArgs e)
        {
            using (FormNewGame frmNewGame = new FormNewGame())
            {
                DialogResult result = frmNewGame.ShowDialog();

                if (result == DialogResult.OK && frmNewGame.RolePlayingGame != null)
                {
                    classesToolStripMenuItem.Enabled = true;
                    rolePlayingGame = frmNewGame.RolePlayingGame;
                }
            }
        }

        void openGameToolStripMenuItem_Click(object sender, EventArgs e)
        {
        }

        void saveGameToolStripMenuItem_Click(object sender, EventArgs e)
        {
        }

        void exitToolStripMenuItem_Click(object sender, EventArgs e)
        {
            this.Close();
        }

        void classesToolStripMenuItem_Click(object sender, EventArgs e)
        {
            if (frmClasses == null)
            {
                frmClasses = new FormClasses();
                frmClasses.MdiParent = this;
            }

            frmClasses.Show();
        }

        #endregion

        #region Method Region
        #endregion
    }
}

There is a field of type RolePlayingGame to hold the RolePlayingGame object associated with the 
editor. There is also a field FormClasses for the form that holds all of the EntityData objects. The 
constructor wires the event handlers for all of the menu items. 



The handler for the New Game menu item has a using statement that creates an instance of 
FormNewGame. Inside the using statement I call the ShowDialog method of the form and capture the 
result in the variable result. If result is OK, meaning the form was closed by clicking OK, and the 
RolePlayingGame property of the form is not null I set the Classes menu item to Enabled and the 
rolePlayingGame field to the RolePlayingGame property of FormNewGame. In the Exit menu item 
handler I just call Close on the form to close the form. Later I will add in code to make sure that data is 
saved before closing the form.

The handler for the Classes menu item checks to see if frmClasses is null. If it is then it has not been 
created yet so I create it. I also set the MdiParent property of the form to be the current instance of 
FormMain using this. After creating the form if necessary I call the Show method rather than 
ShowDialog. This allows you to flip between child forms of the parent form easily.

I'm going to end this tutorial here as it is rather on the long side. I want to try and keep them to a 
reasonable length so that you don't have too much to digest at once. I encourage you to visit the news 
page of my site, XNA Game   Programming Adventures  , for the latest news on my tutorials.

Good luck in your game programming adventures!

Jamie McMahon

http://xnagpa.net/news.html
http://xnagpa.net/news.html

