
XNA 4.0 RPG Tutorials

Part 10

Character Classes

I'm writing these tutorials for the new XNA 4.0 framework. The tutorials will make more sense if they
are read in order. You can find the list of tutorials on the XNA 4.0 RPG tutorials page of my web site. I
will be making my version of the project available for download at the end of each tutorial. It will be
included on the page that links to the tutorials.

This tutorial is about adding in classes related to characters in the game. When I say characters I mean
the player character, non-player characters, and monsters. Monster is a rather generic term to mean any
enemy that the player will face. They can be anything for a bandit to a wolf to a dragon. Player
characters and non-player characters will be a little different from monsters. A monster will be a more
generic version than player characters and non-player characters. There are a number of things that all
three will share in common though.

I will be adding items related to characters to the RpgLibrary project. Right click the RpgLibrary
project in the solution explorer, select Add and then New Folder and call it CharacterClasses. I'm
going to add in a class to represent an attribute that has a current and maximum value like health and
mana. Right click the CharacterClasses folder, select Add and then Class. Call this new class
AttributePair. The code for that class follows.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.CharacterClasses
{
 public class AttributePair
 {
 #region Field Region

 int currentValue;
 int maximumValue;

 #endregion

 #region Property Region

 public int CurrentValue
 {
 get { return currentValue; }
 }

 public int MaximumValue
 {
 get { return maximumValue; }
 }

 public static AttributePair Zero
 {

http://xnagpa.net/xnarpg4tutorials.html

 get { return new AttributePair(); }
 }

 #endregion

 #region Constructor Region

 private AttributePair()
 {
 currentValue = 0;
 maximumValue = 0;
 }

 public AttributePair(int maxValue)
 {
 currentValue = maxValue;
 maximumValue = maxValue;
 }

 #endregion

 #region Method Region

 public void Heal(ushort value)
 {
 currentValue += value;
 if (currentValue > maximumValue)
 currentValue = maximumValue;
 }

 public void Damage(ushort value)
 {
 currentValue -= value;
 if (currentValue < 0)
 currentValue = 0;
 }

 public void SetCurrent(int value)
 {
 currentValue = value;
 if (currentValue > maximumValue)
 currentValue = maximumValue;
 }

 public void SetMaximum(int value)
 {
 maximumValue = value;
 if (currentValue > maximumValue)
 currentValue = maximumValue;
 }

 #endregion
 }
}

I had considered making the AttributePair a structure rather than a class. In the end I decided to go
with a class as one of the main reasons for using a structure rather than a class is you will be frequently
creating and destroying objects of that type. That is not something that I will be doing.

There are two fields in this class. The first is currentValue which represents the current value of the
pair. The other is maximumValue and represents the maximum value the pair can have. I want to force
the use of methods that allow for validation to modify the fields so there are read only properties to
expose the fields. CurrentValue exposes the currentValue field and MaximumValue exposes the
maximumValue field. There is a static property, Zero, that just returns an attribute pair with the default
values of zero.

Their are two constructors in the class. The first is a private constructor that sets the fields to 0. It was
called from the static property Zero that returns an attribute pair with the values set to 0. The other
constructor takes an integer parameter for the maximum value of the attribute pair. It sets the current
value and maximum values to that parameter.

I used role playing game terms for two of the methods, Heal and Damage. The Heal method is used to
increase the currentValue field up to the maximum value. The Damage method is used to decrease the
currentValue field. They both take a value parameter that is an unsigned short the value to increase or
decrease. I decided to use unsigned short as passing in negative numbers would reverse the effect. The
Heal method adds the value parameter to the currentValue field. It then checks to make sure that it
doesn't exceed the maximumValue field. If it does then currentValue is set to maximumValue. The
Damage method decreases the currentValue field. If currentValue is less than zero it is set to zero.

The SetCurrent method is used to set the currentValue field to a specific value. It first sets the
currentValue field to the value passed in. It checks to make sure that currentValue is not greater than
maximumValue. If it is it The SetMaximum method is use to set the maximumValue field. It checks
to make sure that the currentValue field is not greater than the maximumValue field. If it is it then
sets currentValue to be maximumValue.

I'm now going to add in a class that can be used to read in information about character classes. This
again includes the player character, non-player character, and monsters in the game. I'm giving the
three a basic name of Entity. Right click the CharacterClasses folder, select Add and then Class.
Name this new class EntityData. This the code for that class.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.CharacterClasses
{
 public class EntityData
 {
 #region Field Region

 public string ClassName;

 public int Strength;
 public int Dexterity;
 public int Cunning;
 public int Willpower;
 public int Magic;
 public int Constitution;

 public string HealthFormula;
 public string StaminaFormula;
 public string MagicFormula;

 #endregion

 #region Constructor Region

 private EntityData()
 {
 }

 #endregion

 #region Static Method Region

 public static void ToFile(string filename)
 {
 }

 public static EntityData FromFile(string filename)
 {
 EntityData entity = new EntityData();

 return entity;
 }

 #endregion
 }
}

This is a pretty basic class with a few fields, a private constructor and a static method. There is field for
name of the entity, EntityName. This will be the name of the entity like Fighter or Wolf. All entities in
the game will share some attributes. Strength measures how strong an entity is. Dexterity is a
measure of the entity's agility. Cunning is a measure of the entity's mental reasoning and perception.
Willpower determines an entity's stamina and mana and measures how quickly the entity tires in
combat. Magic is used to determine a magic using entities spell power and how effective healing items
and spells are. Constitution measures how healthy an entity is and is used to determine the entity's
health.

The next three fields will be used to determine the entity's health, mana, and stamina. Different entities
will have different health, mana, and stamina. A dwarf could have higher health than other entities for
example. I will explain how the formulas will work later. I included them as they will be needed.

There is a private constructor in the class that is there to be expanded later as well. I also included two
static methods ToFile and FromFile. Both of them take a string parameter that is the file name. These
will be used to write an entity to a file or read in an entity from a file. The FromFile method creates a
new instance of type EntityData and returns the entity. I will be adding the code to read and write
entities later.

With that I'm going to create an abstract base class for all entities in the game. Right click the
CharacterClasses folder, select Add and then Class. Name this new class Entity. The code for the
Entity class follows next.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.CharacterClasses
{
 public enum EntityGender { Male, Female, Unknown }

 public abstract class Entity
 {
 #region Vital Field and Property Region

 protected string entityType;
 protected EntityGender gender;

 public string EntityType
 {
 get { return entityType; }
 }

 public EntityGender Gender

 {
 get { return gender; }
 protected set { gender = value; }
 }

 #endregion

 #region Basic Attribute and Property Region

 protected int strength;
 protected int dexterity;
 protected int cunning;
 protected int willpower;
 protected int magic;
 protected int constitution;

 protected int strengthModifier;
 protected int dexterityModifier;
 protected int cunningModifier;
 protected int willpowerModifier;
 protected int magicModifier;
 protected int constitutionModifier;

 public int Strength
 {
 get { return strength + strengthModifier; }
 protected set { strength = value; }
 }

 public int Dexterity
 {
 get { return dexterity + dexterityModifier; }
 protected set { dexterity = value; }
 }

 public int Cunning
 {
 get { return cunning + cunningModifier; }
 protected set { cunning = value; }
 }

 public int Willpower
 {
 get { return willpower + willpowerModifier; }
 protected set { willpower = value; }
 }

 public int Magic
 {
 get { return magic + magicModifier; }
 protected set { magic = value; }
 }

 public int Constitution
 {
 get { return constitution + constitutionModifier; }
 protected set { constitution = value; }
 }

 #endregion

 #region Calculated Attribute Field and Property Region

 protected AttributePair health;
 protected AttributePair stamina;
 protected AttributePair mana;

 public AttributePair Health
 {

 get { return health; }
 }

 public AttributePair Stamina
 {
 get { return stamina; }
 }

 public AttributePair Mana
 {
 get { return mana; }
 }

 protected int attack;
 protected int damage;
 protected int defense;

 #endregion

 #region Level Field and Property Region

 protected int level;
 protected long experience;

 public int Level
 {
 get { return level; }
 protected set { level = value; }
 }

 public long Experience
 {
 get { return experience; }
 protected set { experience = value; }
 }

 #endregion

 #region Constructor Region

 private Entity()
 {
 Strength = 0;
 Dexterity = 0;
 Cunning = 0;
 Willpower = 0;
 Magic = 0;
 Constitution = 0;

 health = new AttributePair(0);
 stamina = new AttributePair(0);
 mana = new AttributePair(0);
 }

 public Entity(EntityData entityData)
 {
 entityType = entityData.EntityName;
 Strength = entityData.Strength;
 Dexterity = entityData.Dexterity;
 Cunning = entityData.Cunning;
 Willpower = entityData.Willpower;
 Magic = entityData.Magic;
 Constitution = entityData.Constitution;

 health = new AttributePair(0);
 stamina = new AttributePair(0);
 mana = new AttributePair(0);
 }

 #endregion

 }
}

There is an enumeration at the name space level so it will be available with out having to use the class
name to reference it. It is for the gender of the entity. You won't always need to know the gender of an
entity, like a green slime from D&D, so there is an Unknown value as well as Male and Female. By
default an entity will have an Unknown gender that you can override in any class that inherits from
Entity.

There are a number of regions in this class to split it up logically. The first region is the Vital Field and
Property region. This region has fields and properties for the entity's type and the entity's gender.

The next region is the Basic Attribute Field and Property region. This region has fields for the six
basic attributes: Strength, Dexterity, Cunning, Willpower, Magic, and Constitution. There are also
modifier fields for each of the attributes. There are properties for each of the six basic attributes. The
get part is public and returns the attribute plus the modifier. The set part is protected and just sets the
field of the property name starting with a lower case letter.

Then comes the Calculated Attribute Field and Property region. There are fields and properties the
three paired attributes: health, mana, and stamina. The properties that expose them are public and
read only. This allows use of the methods to modify their values but not modify them directly. I also
included fields for the attack, damage, and defense attributes of the entity. I will add properties for
them down the road when they are needed.

There is also a Level Field and Property region that has fields and properties for the level of the entity
and the experience of the entity. Like the basic attributes the properties that expose the fields and public
get and protected set parts to them.

The last region in this class is the Constructor region. It has two constructors. There is a private
constructor and a public constructor. The private constructor just sets values to 0. It will be useful later
on. The public constructor takes an EntityData parameter. It sets the entityType field and the basic
attribute fields. It then creates the calculated fields and sets them to 0 as well. Later you will use the
formula fields to calculate their values.

The next step in the tutorial is to add in the base character classes. Namely classes for fighters, rogues,
wizards and priests. The code is pretty much the same. This is why I had been thinking about the class
system to be dynamic rather than static. I will write tutorials on how to use a dynamic rather than static
system for those who are interested in it.

The first class will be the Fighter class. Right click the CharacterClasses folder, select Add and then
Class. Name this new class Figher. This is the code.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.CharacterClasses
{
 public class Fighter : Entity
 {
 #region Field Region
 #endregion

 #region Property Region
 #endregion

 #region Constructor Region

 public Fighter(EntityData entityData)
 : base(entityData)
 {
 }

 #endregion

 #region Method Region
 #endregion
 }
}

This class inherits from Entity. There are regions in the class but the only region with code is the
Constructor region. There is a constructor because the public constructor for Entity requires an
EntityData parameter. The other classes have the same code the only difference is they are called
Rogue, Priest, and Wizard. Add classes to the CharacterClasses folder like you did for the Fighter
class but call them Rogue, Priest, and Wizard. The code for each class follows next in the same order.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.CharacterClasses
{
 public class Rogue : Entity
 {
 #region Field Region
 #endregion

 #region Property Region
 #endregion

 #region Constructor Region

 public Rogue(EntityData entityData)
 : base(entityData)
 {
 }

 #endregion

 #region Method Region
 #endregion
 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.CharacterClasses
{
 public class Priest : Entity
 {
 #region Field Region
 #endregion

 #region Property Region
 #endregion

 #region Constructor Region

 public Priest(EntityData entityData)
 : base(entityData)
 {
 }

 #endregion

 #region Method Region
 #endregion
 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace RpgLibrary.CharacterClasses
{
 public class Wizard : Entity
 {
 #region Field Region
 #endregion

 #region Property Region
 #endregion

 #region Constructor Region

 public Wizard(EntityData entityData)
 : base(entityData)
 {
 }

 #endregion

 #region Method Region
 #endregion
 }
}

What I'm going to do next is add a class to the game. This class will represent the world the game takes
place in. This class will have some XNA elements in it. It will also require some of the elements from
the RpgLibrary. The solution I chose to go with is add the world class into the XRpgLibrary and add
a reference for the RpgLibrary to the XRpgLibrary.

To start, right click the XRpgLibrary project and select the Add Reference item. In the dialog box that
pops up select the Projects tab. From that tab select the RpgLibrary entry. The RpgLibrary is now
referenced in the XRpgLibrary project so you can use the classes from that project there. Right click
the XRpgLibrary project, select Add and then New Folder. Name this new folder WorldClasses. This
folder will hold classes related to the world the player will explore. Right click the WorldClasses
folder, select Add and then Class. Name this class World. This is the code for the World class.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;

using RpgLibrary.CharacterClasses;
using RpgLibrary.ItemClasses;

using XRpgLibrary.TileEngine;
using XRpgLibrary.SpriteClasses;

namespace XRpgLibrary.WorldClasses
{
 public class World
 {
 #region Graphic Field and Property Region

 Rectangle screenRect;

 public Rectangle ScreenRectangle
 {
 get { return screenRect; }
 }

 #endregion

 #region Item Field and Property Region

 ItemManager itemManager = new ItemManager();

 #endregion

 #region Level Field and Property Region
 #endregion

 #region Constructor Region

 public World(Rectangle screenRectangle)
 {
 screenRect = screenRectangle;
 }

 #endregion

 #region Method Region

 public void Update(GameTime gameTime)
 {
 }

 public void Draw(GameTime gameTime, SpriteBatch spriteBatch)
 {
 }

 #endregion
 }
}

It needs to be fleshed out a bit but it is a good beginning. There are using statements for XNA
Framework name space that will be used. There are also using statements for the two name spaces in
the RpgLibrary project. There are also using statements for the tile engine sprite classes of the
XRpgLibrary.

There are a few field and property regions in this class. The Graphic Field and Property region is for
fields and properties related to graphics like the screenRect field that represents the screen as a
rectangle and the property that exposes it. The Item Field and Property region will hold fields an
properties related to the items in the game. Again, this is items that can be in your game. It is not for
inventory, that will be implemented later on. The Level Field and Property region will be for fields
and properties related to levels in the game.

The constructor takes the area for the screen represented by a rectangle and sets the field. This class
will need to update itself and draw itself so there are method stubs for updating and drawing. Both
methods take GameTime parameters and the Draw method takes an additional SpriteBatch
parameter.

Things are coming together but there is still more work to be done. I think that is enough for this
tutorial. I'd like to try and keep them to a reasonable length so that you don't have too much to digest at
once. I encourage you to visit the news page of my site, XNA Game Programming Adventures , for the
latest news on my tutorials.

Good luck in your game programming adventures!

Jamie McMahon

http://xnagpa.net/news.html
http://xnagpa.net/news.html

