
XNA 4.0 RPG Tutorials

Part 8

Updating Character Generator and Tile Engine

I'm writing these tutorials for the new XNA 4.0 framework. The tutorials will make more sense if they
are read in order. You can find the list of tutorials on the XNA 4.0 RPG tutorials page of my web site. I
will be making my version of the project available for download at the end of each tutorial. It will be
included on the page that links to the tutorials.

In this tutorial I'm going to be updating the character generator to display a picture of the player's
character choice. I will also in the GamePlayScreen class load the appropriate image. I'm going to do a
little work on the tile engine as well, make it so that you don't always have to subtract the position of
the camera and draw only the tiles that need to be drawn.

First thing to change is in the StartMenuScreen. I don't want the game to jump straight to the
GamePlayScreen. if the player decides to load a game. The reason will become apparent shortly. What
I did in the menuItem_Selected method is comment out pushing the GamePlayScreen as the current
state if the loadGame was selected. Change that method to the following.

private void menuItem_Selected(object sender, EventArgs e)
{
 if (sender == startGame)
 {
 StateManager.PushState(GameRef.CharacterGeneratorScreen);
 }

 if (sender == loadGame)
 {
 // StateManager.PushState(GameRef.GamePlayScreen);
 }

 if (sender == exitGame)
 {
 GameRef.Exit();
 }
}

I'm now going to update the CharacterGeneratorScreen. The first step is to add in a PictureBox field
for the preview of the character. The other is to add in a 2D array of Texture2D for the images. Add
these two fields to the Field region of the CharacterGeneratorScreen.

PictureBox characterImage;
Texture2D[,] characterImages;

You now want to add the PictureBox to the control manager and you want to read in the images. I
added a call in the LoadContent method to a method I wrote to read in the images, LoadImages. I
also wired the handler for the SelectionChanged event of the LeftRightSelectors. Change the
LoadContent method and CreateControls methods to the following. Also, add in the LoadImages
and selectionChanged methods to the Method region.

http://xnagpa.net/xnarpg4tutorials.html

protected override void LoadContent()
{
 base.LoadContent();

 LoadImages();
 CreateControls();
}

private void CreateControls()
{
 Texture2D leftTexture = Game.Content.Load<Texture2D>(@"GUI\leftarrowUp");
 Texture2D rightTexture = Game.Content.Load<Texture2D>(@"GUI\rightarrowUp");
 Texture2D stopTexture = Game.Content.Load<Texture2D>(@"GUI\StopBar");

 backgroundImage = new PictureBox(
 Game.Content.Load<Texture2D>(@"Backgrounds\titlescreen"),
 GameRef.ScreenRectangle);
 ControlManager.Add(backgroundImage);

 Label label1 = new Label();

 label1.Text = "Who will search for the Eyes of the Dragon?";
 label1.Size = label1.SpriteFont.MeasureString(label1.Text);
 label1.Position = new Vector2((GameRef.Window.ClientBounds.Width - label1.Size.X) / 2, 150);

 ControlManager.Add(label1);

 genderSelector = new LeftRightSelector(leftTexture, rightTexture, stopTexture);
 genderSelector.SetItems(genderItems, 125);
 genderSelector.Position = new Vector2(label1.Position.X, 200);
 genderSelector.SelectionChanged += new EventHandler(selectionChanged);

 ControlManager.Add(genderSelector);

 classSelector = new LeftRightSelector(leftTexture, rightTexture, stopTexture);
 classSelector.SetItems(classItems, 125);
 classSelector.Position = new Vector2(label1.Position.X, 250);
 classSelector.SelectionChanged += selectionChanged;

 ControlManager.Add(classSelector);

 LinkLabel linkLabel1 = new LinkLabel();
 linkLabel1.Text = "Accept this character.";
 linkLabel1.Position = new Vector2(label1.Position.X, 300);
 linkLabel1.Selected += new EventHandler(linkLabel1_Selected);

 ControlManager.Add(linkLabel1);

 characterImage = new PictureBox(
 characterImages[0, 0],
 new Rectangle(500, 200, 96, 96),
 new Rectangle(0, 0, 32, 32));
 ControlManager.Add(characterImage);

 ControlManager.NextControl();
}

private void LoadImages()
{
 characterImages = new Texture2D[genderItems.Length, classItems.Length];

 for (int i = 0; i < genderItems.Length; i++)
 {
 for (int j = 0; j < classItems.Length; j++)
 {
 characterImages[i, j] = Game.Content.Load<Texture2D>(@"PlayerSprites\" +
genderItems[i] + classItems[j]);
 }
 }
}

void selectionChanged(object sender, EventArgs e)
{
 characterImage.Image = characterImages[genderSelector.SelectedIndex,
classSelector.SelectedIndex];
}

The LoadContent method calls the LoadImages method before CreateControls. It does this becasue
in the CreateControls method I use the images loaded in for the PictureBox to display the preview of
the player's character. In the CreateControls wires the handler for the SelectionChanged event for the
genderSelector and classSelector to the selectionChanged method. It creates the PictureBox passing
in the texture for a male fighter, the default character. I chose an arbitrary destination rectangle for the
PictureBox and for the source rectangle I used the first frame of the animation. The PictureBox is then
added to the ControlManager.

The LoadImages method is where I load in the sprite sheets for the different types of characters. The
first step is to create an array that holds the images. For the first dimension I use the length of the
genderItems array. For the second the length of the classItems array. The there is a set of nested for
loops. The outer loop is for the gender and the inner loop for the class. To find the name of images I
take the folder where the sprites are located add the gender from the genderItems array and then the
class from the classItems array. This works because I named the sprites gender + class.

The selectionChanged event is where I change the image based on what the choices are in the left and
right selectors. I use the SelectedIndex properties of the selectors for the index of each dimension. The
genderSelector for the first dimension and classSelector for the second.

The next problem is getting the player's selection to the GamePlayScreen. I'm not ready to add in a
class for the world yet. There is much I want to add before I get there. What I elected to do was add in
properties to the CharacterGeneratorScreen that return the SelectedItem property of the gender and
the class selectors. Then, in the GamePlayScreen, I use the properties to retrieve the values. First, to
the Property region of the CharacterGeneratorScreen add in the following properties.

public string SelectedGender
{
 get { return genderSelector.SelectedItem; }
}

public string SelectedClass
{
 get { return classSelector.SelectedItem; }
}

Now, in the LoadContent method of the GamePlayScreen you use the values of these properties to
load in the appropriate sprite sheet. This is why I removed going straight to the GamePlayScreen from
the StartMenuScreen. If you do that you will get a null reference exception because the LoadContent
method of the CharacterGeneratorScreen has not been called. It won't be called if you don't use the
screen manager to push it on the stack or change to that screen. Change the LoadContent method of
the GamePlayScreen to the following.

protected override void LoadContent()
{
 Texture2D spriteSheet = Game.Content.Load<Texture2D>(
 @"PlayerSprites\" +
 GameRef.CharacterGeneratorScreen.SelectedGender +
 GameRef.CharacterGeneratorScreen.SelectedClass);

 Dictionary<AnimationKey, Animation> animations = new Dictionary<AnimationKey, Animation>();

 Animation animation = new Animation(3, 32, 32, 0, 0);
 animations.Add(AnimationKey.Down, animation);

 animation = new Animation(3, 32, 32, 0, 32);
 animations.Add(AnimationKey.Left, animation);

 animation = new Animation(3, 32, 32, 0, 64);
 animations.Add(AnimationKey.Right, animation);

 animation = new Animation(3, 32, 32, 0, 96);
 animations.Add(AnimationKey.Up, animation);

 sprite = new AnimatedSprite(spriteSheet, animations);

 base.LoadContent();

 Texture2D tilesetTexture = Game.Content.Load<Texture2D>(@"Tilesets\tileset1");
 Tileset tileset1 = new Tileset(tilesetTexture, 8, 8, 32, 32);

 tilesetTexture = Game.Content.Load<Texture2D>(@"Tilesets\tileset2");
 Tileset tileset2 = new Tileset(tilesetTexture, 8, 8, 32, 32);

 List<Tileset> tilesets = new List<Tileset>();
 tilesets.Add(tileset1);
 tilesets.Add(tileset2);

 MapLayer layer = new MapLayer(40, 40);

 for (int y = 0; y < layer.Height; y++)
 {
 for (int x = 0; x < layer.Width; x++)
 {
 Tile tile = new Tile(0, 0);

 layer.SetTile(x, y, tile);
 }
 }

 MapLayer splatter = new MapLayer(40, 40);

 Random random = new Random();

 for (int i = 0; i < 80; i++)
 {
 int x = random.Next(0, 40);
 int y = random.Next(0, 40);
 int index = random.Next(2, 14);

 Tile tile = new Tile(index, 0);
 splatter.SetTile(x, y, tile);
 }

 splatter.SetTile(1, 0, new Tile(0, 1));
 splatter.SetTile(2, 0, new Tile(2, 1));
 splatter.SetTile(3, 0, new Tile(0, 1));

 List<MapLayer> mapLayers = new List<MapLayer>();
 mapLayers.Add(layer);
 mapLayers.Add(splatter);

 map = new TileMap(tilesets, mapLayers);
}

What I want to do next is to do a little work on the tile engine, mostly the Camera class. I'm going to
implement being able to zoom in and zoom out to the Camera class. I'm also going to make it so that

you are not constantly having to subtract the position of the camera in your drawing code. So, open the
code for your Camera class. The first step is to check for keys or buttons to make the camera zoom in
or out and then call methods to have the camera zoom in or out. Change the Update method to the
following and add the methods ZoomIn and ZoomOut.

public void Update(GameTime gameTime)
{
 if (InputHandler.KeyReleased(Keys.PageUp) ||
 InputHandler.ButtonReleased(Buttons.LeftShoulder, PlayerIndex.One))
 ZoomIn();
 else if (InputHandler.KeyReleased(Keys.PageDown) ||
 InputHandler.ButtonReleased(Buttons.RightShoulder, PlayerIndex.One))
 ZoomOut();

 if (mode == CameraMode.Follow)
 return;

 Vector2 motion = Vector2.Zero;

 if (InputHandler.KeyDown(Keys.Left) ||
 InputHandler.ButtonDown(Buttons.RightThumbstickLeft, PlayerIndex.One))
 motion.X = -speed;
 else if (InputHandler.KeyDown(Keys.Right) ||
 InputHandler.ButtonDown(Buttons.RightThumbstickRight, PlayerIndex.One))
 motion.X = speed;

 if (InputHandler.KeyDown(Keys.Up) ||
 InputHandler.ButtonDown(Buttons.RightThumbstickUp, PlayerIndex.One))
 motion.Y = -speed;
 else if (InputHandler.KeyDown(Keys.Down) ||
 InputHandler.ButtonDown(Buttons.RightThumbstickDown, PlayerIndex.One))
 motion.Y = speed;

 if (motion != Vector2.Zero)
 {
 motion.Normalize();
 position += motion * speed;
 LockCamera();
 }
}

private void ZoomIn()
{
 zoom += .25f;

 if (zoom > 2.5f)
 zoom = 2.5f;
}

private void ZoomOut()
{
 zoom -= .25f;

 if (zoom < .5f)
 zoom = .5f;
}

I check to see if the Page Up or Left Shoulder on the game pad are pressed. If they are I call the
method ZoomIn. I then check to see if the Page Down or Right Shoulder on the game pad are
pressed. If they are I call the method ZoomOut.

Zooming in is the process of making things larger and the ZoomIn method handles that. To do that I
increment the zoom field by .25 or 25 percent. I see the zoom field is greater than 2.5, or 250 percent

larger than normal. If it is I set it to be 2.5 as I think that is more than large enough. Zooming out is the
process of making things smaller and the method ZoomOut handles doing that. To do that I decrement
the zoom field by .25. I see if it is smaller that .5 and if it is set its value to .5 or 50 percent smaller.

Our map still doesn't zoom in or out though. I will get to that in a minute. In the GamePlayScreen
where we do the call to Begin of the SpriteBatch we are using the identity matrix for our
transformation matrix. You want to instead use a transformation matrix related to the camera. You will
want to scale the map according to the zoom field and than you will want to translate, or move, using
the position of the camera. You combine transformations by multiplying the matrix for each together.
The order in which you do this is important. You should following the following rule: Identity, Scale,
Rotation, Orbit, and Translate. So, we want to add in two transformation matricies. The first to scale the
map according to the zoom field and the second to translate the map using the Position of the camera.
The Matrix class has static methods for performing these operations. It will also be helpful to know the
view port the camera so I added in a property to return the viewportRectangle field. Add the following
properties to the camera class in the Property region.

public Matrix Transformation
{
 get { return Matrix.CreateScale(zoom) *
 Matrix.CreateTranslation(new Vector3(-Position, 0f)); }
}

public Rectangle ViewportRectangle
{
 get { return new Rectangle(
 viewportRectangle.X,
 viewportRectangle.Y,
 viewportRectangle.Width,
 viewportRectangle.Height); }
}

For the CreateScale method call I just pass in the zoom field. For the CreateTranslation method call I
pass in a Vector3. To create it I use negative position and 0f for the other. I use negative position
because we subtract the camera's position. I use 0f, the Z coordinate because we ignore the Z
coordinate because we are working in two dimensions, not three.

Back in the Draw method of the GamePlayScreen you will want to switch the Matrix.Identity with
the transformation matrix of the Camera class. Update the Draw method of the GamePlayScreen to
the following.

public override void Draw(GameTime gameTime)
{
 GameRef.SpriteBatch.Begin(
 SpriteSortMode.Deferred,
 BlendState.AlphaBlend,
 SamplerState.PointClamp,
 null,
 null,
 null,
 player.Camera.Transformation);

 map.Draw(GameRef.SpriteBatch, player.Camera);
 sprite.Draw(gameTime, GameRef.SpriteBatch, player.Camera);

 base.Draw(gameTime);

 GameRef.SpriteBatch.End();
}

I also set the SpriteSortMode to Deferred which gives us a bit of a performance boost. You will now
have to go to the TileMap class and remove the code that was subtracting the camera's position when
finding the destination rectangles. Change Draw method of the TileMap class to the following.

public void Draw(SpriteBatch spriteBatch, Camera camera)
{
 Rectangle destination = new Rectangle(0, 0, Engine.TileWidth, Engine.TileHeight);
 Tile tile;

 foreach (MapLayer layer in mapLayers)
 {
 for (int y = 0; y < layer.Height; y++)
 {
 destination.Y = y * Engine.TileHeight;

 for (int x = 0; x < layer.Width; x++)
 {
 tile = layer.GetTile(x, y);

 if (tile.TileIndex == -1 || tile.Tileset == -1)
 continue;

 destination.X = x * Engine.TileWidth;

 spriteBatch.Draw(
 tilesets[tile.Tileset].Texture,
 destination,
 tilesets[tile.Tileset].SourceRectangles[tile.TileIndex],
 Color.White);
 }
 }
 }
}

You also need to update the Draw method of the AnimatedSprtie class so you are no longer
subtracting the position of the camera. Change that method to the following.

public void Draw(GameTime gameTime, SpriteBatch spriteBatch, Camera camera)
{
 spriteBatch.Draw(
 texture,
 position,
 animations[currentAnimation].CurrentFrameRect,
 Color.White);
}

So now the game builds and runs like before. The zooming of the camera doesn't behave all that nicely
though. For one thing, with the map scaled it is not locking right. If you have a high zoom you can't see
the far edges of the map. Also, with a small zoom you will see the blue background. That is because of
the size of the map. Making a larger map will stop that from happening. Another thing is if you zoom
the camera should move with the zoom. To allow the camera to see more of the map you need to
change the LockCamera method. If the zoom level reduces the size of the map the WidthInPixels and
HeightInPixels properties are smaller. If the zoom level increases the size of the map they increase as
well. To lock the camera properly you can multiply these values by the zoom field. Change the
LockCamera method to the following.

private void LockCamera()
{
 position.X = MathHelper.Clamp(position.X,
 0,
 TileMap.WidthInPixels * zoom - viewportRectangle.Width);
 position.Y = MathHelper.Clamp(position.Y,

 0,
 TileMap.HeightInPixels * zoom - viewportRectangle.Height);
}

Now, if you zoom in you can see the entire map. Moving the camera's position when you zoom in or
out is a little trickier. What I did is after modifying the zoom field is create a Vector2 multiplying
Position by zoom to scale the position. I then called a method I wrote, SnapToPosition. That will snap
the camera to a Vector2. Change the ZoomIn and ZoomOut method to the following. Also add the
SnapToPosition method.

public void ZoomIn()
{
 zoom += .25f;

 if (zoom > 2.5f)
 zoom = 2.5f;

 Vector2 newPosition = Position * zoom;
 SnapToPosition(newPosition);
}

public void ZoomOut()
{
 zoom -= .25f;

 if (zoom < .5f)
 zoom = .5f;

 Vector2 newPosition = Position * zoom;
 SnapToPosition(newPosition);
}

private void SnapToPosition(Vector2 newPosition)
{
 position.X = newPosition.X - viewportRectangle.Width / 2;
 position.Y = newPosition.Y - viewportRectangle.Height / 2;
 LockCamera();
}

The SnapToPosition method sets the X value of the position to the new position of the camera minus
half the width of the view port. Similarly, the Y value is set to the new position of the camera minus
half the height of the view port. Finally, I call the LockCamera method to keep it from scrolling off the
edges. This has the camera working a little funny if it is in follow mode when zooming in. It is rather
jumpy. The solution I found was moving the code for checking if the player wants to zoom the camera
outside of the camera class in to the GamePlayScreen. This way if the camera is in follow mode you
can call the LockToSprite method. Speaking of which, you need to update that method to have it work
properly as well. What you do is similar to what you did in the LockCamera method. You multiply the
sprite's position plus have the width or height by the zoom field. Change the Update and
LockToSprite methods in the camera class to the following.

public void Update(GameTime gameTime)
{
 if (mode == CameraMode.Follow)
 return;

 Vector2 motion = Vector2.Zero;

 if (InputHandler.KeyDown(Keys.Left) ||
 InputHandler.ButtonDown(Buttons.RightThumbstickLeft, PlayerIndex.One))
 motion.X = -speed;
 else if (InputHandler.KeyDown(Keys.Right) ||
 InputHandler.ButtonDown(Buttons.RightThumbstickRight, PlayerIndex.One))

 motion.X = speed;

 if (InputHandler.KeyDown(Keys.Up) ||
 InputHandler.ButtonDown(Buttons.RightThumbstickUp, PlayerIndex.One))
 motion.Y = -speed;
 else if (InputHandler.KeyDown(Keys.Down) ||
 InputHandler.ButtonDown(Buttons.RightThumbstickDown, PlayerIndex.One))
 motion.Y = speed;

 if (motion != Vector2.Zero)
 {
 motion.Normalize();
 position += motion * speed;
 LockCamera();
 }

}

public void LockToSprite(AnimatedSprite sprite)
{
 position.X = (sprite.Position.X + sprite.Width / 2) * zoom
 - (viewportRectangle.Width / 2);
 position.Y = (sprite.Position.Y + sprite.Height / 2) * zoom
 - (viewportRectangle.Height / 2);
 LockCamera();
}

Now I'm going to update the Update method of the GamePlayScreen. I moved the code from the
Camera class to control zooming in and out. I also added a check that if the player's camera is in
follow mode to lock the camera to the player's sprite. Change the Update method to the following.

public override void Update(GameTime gameTime)
{
 player.Update(gameTime);
 sprite.Update(gameTime);

 if (InputHandler.KeyReleased(Keys.PageUp) ||
 InputHandler.ButtonReleased(Buttons.LeftShoulder, PlayerIndex.One))
 {
 player.Camera.ZoomIn();
 if (player.Camera.CameraMode == CameraMode.Follow)
 player.Camera.LockToSprite(sprite);
 }
 else if (InputHandler.KeyReleased(Keys.PageDown) ||
 InputHandler.ButtonReleased(Buttons.RightShoulder, PlayerIndex.One))
 {
 player.Camera.ZoomOut();
 if (player.Camera.CameraMode == CameraMode.Follow)
 player.Camera.LockToSprite(sprite);
 }

 Vector2 motion = new Vector2();

 if (InputHandler.KeyDown(Keys.W) ||
 InputHandler.ButtonDown(Buttons.LeftThumbstickUp, PlayerIndex.One))
 {
 sprite.CurrentAnimation = AnimationKey.Up;
 motion.Y = -1;
 }
 else if (InputHandler.KeyDown(Keys.S) ||
 InputHandler.ButtonDown(Buttons.LeftThumbstickDown, PlayerIndex.One))
 {
 sprite.CurrentAnimation = AnimationKey.Down;
 motion.Y = 1;
 }

 if (InputHandler.KeyDown(Keys.A) ||
 InputHandler.ButtonDown(Buttons.LeftThumbstickLeft, PlayerIndex.One))

 {
 sprite.CurrentAnimation = AnimationKey.Left;
 motion.X = -1;
 }
 else if (InputHandler.KeyDown(Keys.D) ||
 InputHandler.ButtonDown(Buttons.LeftThumbstickRight, PlayerIndex.One))
 {
 sprite.CurrentAnimation = AnimationKey.Right;
 motion.X = 1;
 }

 if (motion != Vector2.Zero)
 {
 sprite.IsAnimating = true;
 motion.Normalize();

 sprite.Position += motion * sprite.Speed;
 sprite.LockToMap();

 if (player.Camera.CameraMode == CameraMode.Follow)
 player.Camera.LockToSprite(sprite);
 }
 else
 {
 sprite.IsAnimating = false;
 }

 if (InputHandler.KeyReleased(Keys.F) ||
 InputHandler.ButtonReleased(Buttons.RightStick, PlayerIndex.One))
 {
 player.Camera.ToggleCameraMode();
 if (player.Camera.CameraMode == CameraMode.Follow)
 player.Camera.LockToSprite(sprite);
 }

 if (player.Camera.CameraMode != CameraMode.Follow)
 {
 if (InputHandler.KeyReleased(Keys.C) ||
 InputHandler.ButtonReleased(Buttons.LeftStick, PlayerIndex.One))
 {
 player.Camera.LockToSprite(sprite);
 }
 }

 base.Update(gameTime);
}

While we have this class open, let's make the map a little bigger. I had used 40 for the width and the
height of the map. I changed my LoadContent method so that the map is now 100 by 100 tiles.
Change the LoadContent method to the following.

protected override void LoadContent()
{
 Texture2D spriteSheet = Game.Content.Load<Texture2D>(
 @"PlayerSprites\" +
 GameRef.CharacterGeneratorScreen.SelectedGender +
 GameRef.CharacterGeneratorScreen.SelectedClass);

 Dictionary<AnimationKey, Animation> animations = new Dictionary<AnimationKey, Animation>();

 Animation animation = new Animation(3, 32, 32, 0, 0);
 animations.Add(AnimationKey.Down, animation);

 animation = new Animation(3, 32, 32, 0, 32);
 animations.Add(AnimationKey.Left, animation);

 animation = new Animation(3, 32, 32, 0, 64);
 animations.Add(AnimationKey.Right, animation);

 animation = new Animation(3, 32, 32, 0, 96);
 animations.Add(AnimationKey.Up, animation);

 sprite = new AnimatedSprite(spriteSheet, animations);

 base.LoadContent();

 Texture2D tilesetTexture = Game.Content.Load<Texture2D>(@"Tilesets\tileset1");
 Tileset tileset1 = new Tileset(tilesetTexture, 8, 8, 32, 32);

 tilesetTexture = Game.Content.Load<Texture2D>(@"Tilesets\tileset2");
 Tileset tileset2 = new Tileset(tilesetTexture, 8, 8, 32, 32);

 List<Tileset> tilesets = new List<Tileset>();
 tilesets.Add(tileset1);
 tilesets.Add(tileset2);

 MapLayer layer = new MapLayer(100, 100);

 for (int y = 0; y < layer.Height; y++)
 {
 for (int x = 0; x < layer.Width; x++)
 {
 Tile tile = new Tile(0, 0);

 layer.SetTile(x, y, tile);
 }
 }

 MapLayer splatter = new MapLayer(100, 100);

 Random random = new Random();

 for (int i = 0; i < 100; i++)
 {
 int x = random.Next(0, 100);
 int y = random.Next(0, 100);
 int index = random.Next(2, 14);

 Tile tile = new Tile(index, 0);
 splatter.SetTile(x, y, tile);
 }

 splatter.SetTile(1, 0, new Tile(0, 1));
 splatter.SetTile(2, 0, new Tile(2, 1));
 splatter.SetTile(3, 0, new Tile(0, 1));

 List<MapLayer> mapLayers = new List<MapLayer>();
 mapLayers.Add(layer);
 mapLayers.Add(splatter);

 map = new TileMap(tilesets, mapLayers);
}

Things are coming together but there is still more work to be done. I think that is more than enough for
this tutorial. I'd like to try and keep them to a reasonable length so that you don't have too much to
digest at once. I encourage you to visit the news page of my site, XNA Game Programming
Adventures, for the latest news on my tutorials.

Good luck in your game programming adventures!

Jamie McMahon

http://xnagpa.net/news.html
http://xnagpa.net/news.html
http://xnagpa.net/news.html

