
XNA 4.0 RPG Tutorials

Part 6

Character Generator

I'm writing these tutorials for the new XNA 4.0 framework. The tutorials will make more sense if they
are read in order. You can find the list of tutorials on the XNA 4.0 RPG tutorials page of my web site. I
will be making my version of the project available for download at the end of each tutorial. It will be
included on the page that links to the tutorials.

In this tutorial I will be adding in a new game screen to create a character. First I will be adding in a
new control, a left and right selector. When the control is selected pressing the left or right arrow key
will cycle through a collection of strings. Right click the Controls folder in the XRpgLibrary project
in the solution explore. Select Add, and then Class. Name this new class LeftRightSelector. The code
for this class follows.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;

namespace XRpgLibrary.Controls
{
 public class LeftRightSelector : Control
 {
 #region Event Region

 public event EventHandler SelectionChanged;

 #endregion

 #region Field Region

 List<string> items = new List<string>();

 Texture2D leftTexture;
 Texture2D rightTexture;
 Texture2D stopTexture;

 Color selectedColor = Color.Red;
 int maxItemWidth;
 int selectedItem;

 #endregion

 #region Property Region

 public Color SelectedColor
 {
 get { return selectedColor; }
 set { selectedColor = value; }
 }

http://xnagpa.net/xnarpg4tutorials.html

 public int SelectedIndex
 {
 get { return selectedItem; }
 set { selectedItem = (int)MathHelper.Clamp(value, 0f, items.Count); }
 }

 public string SelectedItem
 {
 get { return Items[selectedItem]; }
 }

 public List<string> Items
 {
 get { return items; }
 }

 #endregion

 #region Constructor Region

 public LeftRightSelector(Texture2D leftArrow, Texture2D rightArrow, Texture2D stop)
 {
 leftTexture = leftArrow;
 rightTexture = rightArrow;
 stopTexture = stop;
 TabStop = true;
 Color = Color.White;
 }

 #endregion

 #region Method Region

 public void SetItems(string[] items, int maxWidth)
 {
 this.items.Clear();

 foreach (string s in items)
 this.items.Add(s);

 maxItemWidth = maxWidth;
 }

 protected void OnSelectionChanged()
 {
 if (SelectionChanged != null)
 {
 SelectionChanged(this, null);
 }
 }

 #endregion

 #region Abstract Method Region

 public override void Update(GameTime gameTime)
 {
 }

 public override void Draw(SpriteBatch spriteBatch)
 {
 Vector2 drawTo = position;

 if (selectedItem != 0)
 spriteBatch.Draw(leftTexture, drawTo, Color.White);
 else
 spriteBatch.Draw(stopTexture, drawTo, Color.White);

 drawTo.X += leftTexture.Width + 5f;

 float itemWidth = spriteFont.MeasureString(items[selectedItem]).X;
 float offset = (maxItemWidth - itemWidth) / 2;

 drawTo.X += offset;

 if (hasFocus)
 spriteBatch.DrawString(spriteFont, items[selectedItem], drawTo, selectedColor);
 else
 spriteBatch.DrawString(spriteFont, items[selectedItem], drawTo, Color);

 drawTo.X += -1 * offset + maxItemWidth + 5f;

 if (selectedItem != items.Count - 1)
 spriteBatch.Draw(rightTexture, drawTo, Color.White);
 else
 spriteBatch.Draw(stopTexture, drawTo, Color.White);
 }

 public override void HandleInput(PlayerIndex playerIndex)
 {
 if (items.Count == 0)
 return;

 if (InputHandler.ButtonReleased(Buttons.LeftThumbstickLeft, playerIndex) ||
 InputHandler.ButtonReleased(Buttons.DPadLeft, playerIndex) ||
 InputHandler.KeyReleased(Keys.Left))
 {
 selectedItem--;
 if (selectedItem < 0)
 selectedItem = 0;
 OnSelectionChanged();
 }

 if (InputHandler.ButtonReleased(Buttons.LeftThumbstickRight, playerIndex) ||
 InputHandler.ButtonReleased(Buttons.DPadRight, playerIndex) ||
 InputHandler.KeyReleased(Keys.Right))
 {
 selectedItem++;
 if (selectedItem >= items.Count)
 selectedItem = items.Count - 1;
 OnSelectionChanged();
 }
 }

 #endregion
 }
}

There are a few using statements to bring some of the XNA framework classes into scope. There is an
event associated with this control, SelectionChanged, that if subscribed to will fire if the selection in
the selector is changed.

There are a number of fields in this class. There is a List<string> called items that holds the items for
the selector. There are three Texture2D fields. They hold a stop bar, a left arrow, and a right arrow. I
again want to thank Tuckbone for taking the time to make the graphics. There is a Color field,
selectedColor, that holds the color to draw the control if it is currently selected. There are also two
integer fields, maxItemWidth and selectedIndex. The first is the width of the longest item in the
selector. It is needed because I will be centering items in the selector. The last is the index of the
currently selected item in the selector.

There are a few properties in the class to expose the fields. The Items property exposed the items field.
It is a read only, get, property but you can manipulate the items field with it. You just can't assign to it
directly. The get part of the SelectedIndex property returns the selectedIndex field. The set part sets

the selectedIndex field but uses the Clamp method of MathHelper to make sure the field stays with in
the range of items. The SelectedItem property just returns the item that is currently selected. The
SelectedColor property exposes the selectedColor field.

The constructor for LeftRightSelector takes three parameters. They are an image for displaying the
selector can move left, an image for displaying the selector can move right and a stop bar displaying
the selection can not move in that direction. The constructor sets the fields with the values passed in,
sets the TabStop property to true, and the color of the control to white.

There are two methods that are specific to this control. The first is the SetItems method. It takes an
array of strings for the items and an integer for the maximum width. It loops through the array of
strings passed in and adds them to the items collection. It also assigns the maxItemWidth field with
the value passed in. The OnSelection method will be called if the SelectionChanged if the selection is
changed. It checks to see if the SelectionChanged event is subscribed to. If it is it fires the
SelectionChanged event using itself for the sender and null for the event arguments.

The Update method for this class does nothing. It is there because it is part of the base abstract
class. It would be used if you were doing some sort of animation with the control or other things that
required updating. The HandleInput method will handle the input for the control. It checks to make
sure there are items in the items collection to make sure that there is something to work with. If there
aren't it exits the method. There is next an if statement that checks to see if the left thumb stick has been
released in the left direction, the direction pad has released in the left direction or the left key has been
released. If they have I decrease the selected item by one. If the selected item is less than zero it is set
to zero. It then checks for the releases to the right. I increment the selected item by one. If the selected
item is greater than or equal to the number of items I set the selected item to be the number of items
minus one.

The Draw method draws the control. The first step is to set a local variable to the position the
control is to be drawn at. The reason is that there are several parts to the control. There are the left and
right arrows, the stop bar, and the text. The first step is to see if the left arrow needs to be drawn. It is
only drawn if the selected item is not the first item, the item at index zero. If there is one I draw the left
arrow. If the left arrow does not need to be drawn I draw the stop bar. I then increment the X position of
drawing point by the width of the left arrow plus 5 pixels for padding. I decided to center the text
horizontally in the control. First you need to find the width of the text using the MeasureString
method of the SpriteFont class. I don't need the height of the string so I just used the X for the string.
The offset value is used to determine where to draw the text relative to the drawTo local variable. I
then add the offset value to the X part of the drawTo variable. You want the control drawn in the
selectedColor value if it has focus so there is an if statement to check if the control has focus before
drawing the text. If it selected, it is drawn using the selectedColor and if not the Color value. To figure
out where to draw the right arrow you remove the offset, add the maxItemWidth field and the padding
of five pixels. The last step is to see if the right arrow should be drawn by checking if the selected item
is the last item. It it doesn't need to be drawn then you draw the stop bar.

Now it is time to add in the new screen to the game. Right click the GameScreens folder, select Add
and then Class. Name this new class CharacterGeneratorScreen. The code follows next.

using System;
using System.Collections.Generic;
using System.Linq;

using System.Text;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;

using XRpgLibrary;
using XRpgLibrary.Controls;

namespace EyesOfTheDragon.GameScreens
{
 public class CharacterGeneratorScreen : BaseGameState
 {
 #region Field Region

 LeftRightSelector genderSelector;
 LeftRightSelector classSelector;
 PictureBox backgroundImage;

 string[] genderItems = { "Male", "Female" };
 string[] classItems = { "Fighter", "Wizard", "Rogue", "Priest" };

 #endregion

 #region Property Region
 #endregion

 #region Constructor Region

 public CharacterGeneratorScreen(Game game, GameStateManager stateManager)
 : base(game, stateManager)
 {
 }

 #endregion

 #region XNA Method Region

 public override void Initialize()
 {
 base.Initialize();
 }

 protected override void LoadContent()
 {
 base.LoadContent();

 CreateControls();
 }

 public override void Update(GameTime gameTime)
 {
 ControlManager.Update(gameTime, PlayerIndex.One);
 base.Update(gameTime);
 }

 public override void Draw(GameTime gameTime)
 {
 GameRef.SpriteBatch.Begin();

 base.Draw(gameTime);

 ControlManager.Draw(GameRef.SpriteBatch);

 GameRef.SpriteBatch.End();
 }

 #endregion

 #region Method Region

 private void CreateControls()
 {
 Texture2D leftTexture = Game.Content.Load<Texture2D>(@"GUI\leftarrowUp");
 Texture2D rightTexture = Game.Content.Load<Texture2D>(@"GUI\rightarrowUp");
 Texture2D stopTexture = Game.Content.Load<Texture2D>(@"GUI\StopBar");

 backgroundImage = new PictureBox(
 Game.Content.Load<Texture2D>(@"Backgrounds\titlescreen"),
 GameRef.ScreenRectangle);
 ControlManager.Add(backgroundImage);

 Label label1 = new Label();

 label1.Text = "Who will search for the Eyes of the Dragon?";
 label1.Size = label1.SpriteFont.MeasureString(label1.Text);
 label1.Position = new Vector2((GameRef.Window.ClientBounds.Width - label1.Size.X) /
2, 150);

 ControlManager.Add(label1);

 genderSelector = new LeftRightSelector(leftTexture, rightTexture, stopTexture);
 genderSelector.SetItems(genderItems, 125);
 genderSelector.Position = new Vector2(label1.Position.X, 200);

 ControlManager.Add(genderSelector);

 classSelector = new LeftRightSelector(leftTexture, rightTexture, stopTexture);
 classSelector.SetItems(classItems, 125);
 classSelector.Position = new Vector2(label1.Position.X, 250);

 ControlManager.Add(classSelector);

 LinkLabel linkLabel1 = new LinkLabel();
 linkLabel1.Text = "Accept this character.";
 linkLabel1.Position = new Vector2(label1.Position.X, 300);
 linkLabel1.Selected += new EventHandler(linkLabel1_Selected);

 ControlManager.Add(linkLabel1);

 ControlManager.NextControl();
 }

 void linkLabel1_Selected(object sender, EventArgs e)
 {
 InputHandler.Flush();

 StateManager.PopState();
 StateManager.PushState(GameRef.GamePlayScreen);
 }

 #endregion
 }
}

There are using statements to bring some XNA Framework classes into scope and our XRpgLibrary
project. The class inherits from BaseGameState so it can be used in the state manager and to add some
inherited fields and methods.

There are two LeftRightSelector fields, a PictureBox, and two string arrays. The string arrays hold the
two genders, Male and Female, and the other holds the classes in the game. I'm going with the rather
basic classes for the game, Rogue, Fighter, Priest, and Wizard. I'm hoping to design the class system so
it will be easy to add in different classes. For now they will do. The LeftRightSelectors are to select
the gender and class of the character. The PictureBox is for the background image.

The constructor at the moment does nothing. In the LoadContent method, after the call to to the base
class, I call a method CreateControls that creates the controls on screen. The Update method calls the
Update method of the ControlManager passing in the gameTime parameter of the Update method
and PlayerIndex.One for the first game pad. If you're coding for the Xbox 360 is important for the
player to be able to select what controller they want to use. I will address this in a future tutorial. The
Draw method calls calls the Begin method of the SpriteBatch object from the Game1 class using the
GameRef field. The base.Draw to draw any components on the screen, the Draw method of the
ControlManager, and then End on the SpriteBatch object.

The CreateControls method is where I create the controls on the screen. The first step is to load in the
images for the left arrow, right arrow, and stop bar. Order is important when drawing in 2D. If you don't
get the order right objects will be drawn on top of others and won't be visible. That is why I create the
picture box for the background first and add it to the controls first. Later on down the road I'm going to
update the control manager so you can control how controls will be drawn. After creating the picture
box and adding it to the control manager I create a label with the text: Who will search for the Eyes of
the Dragon?. I find out its size using the MeasureString method of the sprite font then center it
horizontally on the screen. The Y value for its position was completely arbitrary. The label is then
added to the control manager. I then create the LeftRightSelectors for the character's gender and class.
The images for the left arrow, right arrow, and stop bar are passed to the constructor. For the gender
selector the genderItems array is passed in to the SetItems method. Similarly, the classItems array is
passed to the SetItems method of the class selector. For the X coordinate of their position they are
lined up with the X coordinate of the label. I separated the controls 50 pixels a part vertically. I then
create a LinkLabel that the player will select when they are happy with their choices. I set the text to:
Accept this character. I line it up horizontally with the other controls and space it 50 pixels from the
last selector. I also wire an event handler for the Selected event. The control is then added to the
control manager and I call the NextControl method to move the selection to the first control that is a
tab stop.

In the linkLabel1_Selected method is where I handle that the player is happy with their character. I
call the Flush method of the InputHandler to eliminate cascading. I then pop the character generator
off the stack of game states and push the game play screen onto the stack of game states.

The next step is to add this screen to the game. The first step is to add a field to the Game1 class for the
character generator screen and create it in the constructor. Add the following field the Game State
region of the Game1 class. Also, change the constructor to the following as well.

public CharacterGeneratorScreen CharacterGeneratorScreen;

public Game1()
{
 graphics = new GraphicsDeviceManager(this);

 graphics.PreferredBackBufferWidth = screenWidth;
 graphics.PreferredBackBufferHeight = screenHeight;

 ScreenRectangle = new Rectangle(
 0,
 0,
 screenWidth,
 screenHeight);

 Content.RootDirectory = "Content";

 Components.Add(new InputHandler(this));

 stateManager = new GameStateManager(this);
 Components.Add(stateManager);

 TitleScreen = new TitleScreen(this, stateManager);
 StartMenuScreen = new StartMenuScreen(this, stateManager);
 GamePlayScreen = new GamePlayScreen(this, stateManager);
 CharacterGeneratorScreen = new CharacterGeneratorScreen(this, stateManager);

 stateManager.ChangeState(TitleScreen);
}

The last step to implement the character generator takes place in the StartMenuScreen. In the event
handler for the menu items being selected you want to push the character generator onto the stack
instead of the game play screen. Change the menuItem_Selected method to the following.

private void menuItem_Selected(object sender, EventArgs e)
{
 if (sender == startGame)
 {
 StateManager.PushState(GameRef.CharacterGeneratorScreen);
 }

 if (sender == loadGame)
 {
 StateManager.PushState(GameRef.GamePlayScreen);
 }

 if (sender == exitGame)
 {
 GameRef.Exit();
 }
}

Things are starting to come together but there is still a lot of work to be done. But, I think this is
enough for this tutorial. I'd like to try and keep them to a reasonable length so that you don't have too
much to digest at once. I encourage you to visit the news page of my site, XNA Game Programming
Adventures, for the latest news on my tutorials.

Good luck in your game programming adventures!

Jamie McMahon

http://xnagpa.net/news.html
http://xnagpa.net/news.html
http://xnagpa.net/news.html

