
XNA 4.0 RPG Tutorials

Part 5

The Tile Engine - Part 2

I'm writing these tutorials for the new XNA 4.0 framework. The tutorials will make more sense if they
are read in order. You can find the list of tutorials on the XNA 4.0 RPG tutorials page of my web site. I
will be making my version of the project available for download at the end of each tutorial. It will be
included on the page that links to the tutorials.

In this tutorial I will be continuing on with the tile engine. At the moment the map is being drawn but
you need to be able to scroll the map so the player can explore your world. A good way to control
scrolling of the map is to use a 2D camera. The camera shows what the player is looking at in the
world. Right click the TileEngine folder in the XRpgLibrary project, select Add and then Class.
Name this new class Camera. This is the code for the Camera class.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;

namespace XRpgLibrary.TileEngine
{
 public class Camera
 {
 #region Field Region

 Vector2 position;
 float speed;
 float zoom;
 Rectangle viewportRectangle;

 #endregion

 #region Property Region

 public Vector2 Position
 {
 get { return position; }
 private set { position = value; }
 }

 public float Speed
 {
 get { return speed; }
 set
 {
 speed = (float)MathHelper.Clamp(speed, 1f, 16f);
 }
 }

 public float Zoom
 {

http://xnagpa.net/xnarpg4tutorials.html

 get { return zoom; }
 }

 #endregion

 #region Constructor Region

 public Camera(Rectangle viewportRect)
 {
 speed = 4f;
 zoom = 1f;
 viewportRectangle = viewportRect;
 }

 public Camera(Rectangle viewportRect, Vector2 position)
 {
 speed = 4f;
 zoom = 1f;
 viewportRectangle = viewportRect;
 Position = position;
 }

 #endregion

 #region Method Region

 public void Update(GameTime gameTime)
 {
 if (InputHandler.KeyDown(Keys.Left))
 position.X -= speed;
 else if (InputHandler.KeyDown(Keys.Right))
 position.X += speed;

 if (InputHandler.KeyDown(Keys.Up))
 position.Y -= speed;
 else if (InputHandler.KeyDown(Keys.Down))
 position.Y += speed;
 }

 #endregion
 }
}

This camera is a different from cameras that I've created in my other tutorials. It is going to allow the
player to zoom in and out and it is responsible for determining its position in the world. I'm also
thinking of allowing the player to be able to control the camera to view the world but when they move
their character the camera will snap back to the character. If I do go that route I will also be
implementing a "fog of war" that the player can only see areas they've discovered.

There are using statements to bring the XNA Framework and XNA Framework Graphics classes into
scope. There are four fields in the class. The first, position, is the position of the camera on the map
and is a Vector2. There are two float fields: speed and zoom. The speed field controls the speed at
which the camera moves through the world. The zoom field controls the zoom level of the camera. The
last field is a Rectangle field, viewportRectangle, that describes the view port that the tile engine will
draw to.

There are three properties in the Camera class. The Position property returns the position of the
camera in the world. There is a private set to the property. The Speed property exposes the speed field.
The set part uses the MathHelper.Clamp method to clamp the speed between 1 and 16. The last
property, Zoom, is used to return the zoom level of the camera.

There are two constructors for the Camera class. The first takes a Rectangle that describes the view
port the tile engine will be drawn to. The second takes the same rectangle and Vector2 for the position
of the camera. They both set the speed of the camera to 4 pixels and the zoom to 1. A zoom of 1 is a
map with no zoom at all. Less than one zooms in, showing more of the map. Greater than one zooms
out, showing less of the map. Both set the rectangle for the screen as well. The constructor that takes a
Vector2 for the position sets the position field.

There is also a method Update that takes a GameTime parameter used to update the camera's position
in the world. There are a couple if statements. The first checks to see if the left arrow key is down using
the InputHandler class. If it is it decreases the X property of the camera's position by the camera's
speed. In an else-if I check if the right arrow key is down. If it is I increase the camera's X property.
The reason you decrease to move the camera left is that the values of X increase as you move from left
to right across the screen. There is another if statement that checks to see if the up arrow is down and
decreases the Y property of the camera's position. In the else-if I check to see if the down key is down
and increment the Y property of the camera's position. This is different than the X values because the
values of Y increase as you move down the screen. The reason for this is because of the way memory
for graphics is allocated.

I'm going to add a class to the game for the player. This class will be responsible for updating and
drawing the player. Right click the EyesOfTheDragon project in the solution explorer, select Add and
New Folder. Name this new folder Components. Right click the Components folder, select Add and
then Class. Name this class Player. This is the code for the Player class.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;

using XRpgLibrary;
using XRpgLibrary.TileEngine;

namespace EyesOfTheDragon.Components
{
 public class Player
 {
 #region Field Region

 Camera camera;
 Game1 gameRef;

 #endregion

 #region Property Region

 public Camera Camera
 {
 get { return camera; }
 set { camera = value; }
 }

 #endregion

 #region Constructor Region

 public Player(Game game)
 {

 gameRef = (Game1)game;
 camera = new Camera(gameRef.ScreenRectangle);
 }

 #endregion

 #region Method Region

 public void Update(GameTime gameTime)
 {
 camera.Update(gameTime);
 }

 public void Draw(GameTime gameTime, SpriteBatch spriteBatch)
 {
 }

 #endregion
 }
}

This class will be developed more as the game progresses. There are using statements to bring some of
the XNA Framework as well as our XRpgLibrary and XRpgLibrary.TileEngine name spaces. I
added in two fields. The camera is tied to the player so there is a Camera field. There is a property to
expose the camera as well. There is also a Game1 field that will be a reference to the game. The
constructor takes a Game parameter. It casts the parameter to Game1 and assigns it to the gameRef
field. It also creates a camera. The Update method takes a GameTime parameter that is frequently
used by components. It also calls the Update method of the camera passing in the gameTime
parameter. The Draw method a blank method that takes a GameTime parameter but takes a
SpriteBatch parameter as well.

The next step is to add a Player field to the GamePlayScreen class so you will have access to the
camera to scroll the map. You will need to add a using statement for the Components name space of
your game. Also, initialize the player field in the constructor. Add this using statement and change the
Field region and Constructor region to the following.

using EyesOfTheDragon.Components;

#region Field Region

Engine engine = new Engine(32, 32);
Tileset tileset;
TileMap map;
Player player;

#endregion

#region Constructor Region

public GamePlayScreen(Game game, GameStateManager manager)
 : base(game, manager)
{
 player = new Player(game);
}

#endregion

You also need to call the Update method of the player in the Update method of the GamePlayScreen.
Change the Update method of the GamePlayScreen to the following.

public override void Update(GameTime gameTime)

{
 player.Update(gameTime);

 base.Update(gameTime);
}

In the first version of tutorial 4 I had neglected to post the code for the TileMap class. I'm including the
full code for that class here now. I did go back and upgrade tutorial 4 if you're interested.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;

namespace XRpgLibrary.TileEngine
{
 public class TileMap
 {
 #region Field Region

 List<Tileset> tilesets;
 List<MapLayer> mapLayers;

 #endregion

 #region Property Region
 #endregion

 #region Constructor Region

 public TileMap(List<Tileset> tilesets, List<MapLayer> layers)
 {
 this.tilesets = tilesets;
 this.mapLayers = layers;
 }

 public TileMap(Tileset tileset, MapLayer layer)
 {
 tilesets = new List<Tileset>();
 tilesets.Add(tileset);

 mapLayers = new List<MapLayer>();
 mapLayers.Add(layer);
 }

 #endregion

 #region Method Region

 public void Draw(SpriteBatch spriteBatch)
 {
 Rectangle destination = new Rectangle(0, 0, Engine.TileWidth, Engine.TileHeight);
 Tile tile;

 foreach (MapLayer layer in mapLayers)
 {
 for (int y = 0; y < layer.Height; y++)
 {
 destination.Y = y * Engine.TileHeight;

 for (int x = 0; x < layer.Width; x++)
 {
 tile = layer.GetTile(x, y);

 destination.X = x * Engine.TileWidth;

 spriteBatch.Draw(
 tilesets[tile.Tileset].Texture,
 destination,
 tilesets[tile.Tileset].SourceRectangles[tile.TileIndex],
 Color.White);
 }
 }
 }
 }

 #endregion
 }
}

You still need to update the TileMap class to use the camera. The best option is to pass your camera as
a parameter to the Draw method of the TileMap class. You will also need to use the camera to control
where the tiles are drawn. I'm also going to make a couple changes to make the drawing a little more
efficient. Change the Draw method to the following.

public void Draw(SpriteBatch spriteBatch, Camera camera)
{
 Rectangle destination = new Rectangle(0, 0, Engine.TileWidth, Engine.TileHeight);
 Tile tile;

 foreach (MapLayer layer in mapLayers)
 {
 for (int y = 0; y < layer.Height; y++)
 {
 destination.Y = y * Engine.TileHeight - (int)camera.Position.Y;

 for (int x = 0; x < layer.Width; x++)
 {
 tile = layer.GetTile(x, y);

 if (tile.TileIndex == -1 || tile.Tileset == -1)
 continue;

 destination.X = x * Engine.TileWidth - (int)camera.Position.X;

 spriteBatch.Draw(
 tilesets[tile.Tileset].Texture,
 destination,
 tilesets[tile.Tileset].SourceRectangles[tile.TileIndex],
 Color.White);
 }
 }
 }
}

The first change is I added in a Camera parameter after the SpriteBatch parameter. This may be a
little counter intuitive but to move the camera left you add its X value to the X coordinate of the
destination rectangle and to move it right you subtract its X value from the X coordinate. Basically, you
need to subtract the camera's X position from the X coordinate of the destination rectangle. You also
subtract the camera's Y position form the Y coordinate of the destination rectangle.

As you can see, inside the outer for loop I cast the result of subtracting the camera's Y position from the
destination rectangle's Y coordinate. Then in the inner for loop I cast the result of subtracting the
camera's X position form the destination rectangle's X coordinate. In the inner loop I check to make
sure that either the tile index or tile set for the tile is not -1. If it is I move onto the next iteration of the
loop. If you run the game now the map will scroll with the cursor keys being pressed or the left thumb
stick being pressed. Only problem is the map will move off the screen. To fix this you need to lock the

camera so that it will not move off the screen.

You need to add a method to the Camera class to lock the camera and keep it from scrolling off the
edges of the map. The easy parts are the left and top. To keep in from scrolling off the top you keep the
X and Y values of the camera's position from being negative. To keep it from scroll off the right and
bottom you need to know the width and height of the map in pixels and the width and height of the
view port you are drawing to. It would be best to assign two field in the TileMap class the width and
height of the map in tiles. Then you can expose the width and height of the map in pixels using
properties. Change the Field and Property regions to the following.

#region Field Region

List<Tileset> tilesets;
List<MapLayer> mapLayers;

static int mapWidth;
static int mapHeight;

#endregion

#region Property Region

public static int WidthInPixels
{
 get { return mapWidth * Engine.TileWidth; }
}

public static int HeightInPixels
{
 get { return mapHeight * Engine.TileHeight; }
}

#endregion

You still need to set the mapHeight and mapWidth fields. You will do that in the constructors. I'm not
going to have maps with different size layers. You could do it easily but drawing the layers directly
rather than doing the rendering from the map. What I suggest is in the constructors for the TileMap
class is add a check to make sure that the layers are the same size. Change the Constructor region of
the TileMap class to the following.

#region Constructor Region

public TileMap(List<Tileset> tilesets, List<MapLayer> layers)
{
 this.tilesets = tilesets;
 this.mapLayers = layers;

 mapWidth = mapLayers[0].Width;
 mapHeight = mapLayers[0].Height;

 for (int i = 1; i < layers.Count; i++)
 {
 if (mapWidth != mapLayers[i].Width || mapHeight != mapLayers[i].Height)
 throw new Exception("Map layer size exception");
 }
}

public TileMap(Tileset tileset, MapLayer layer)
{
 tilesets = new List<Tileset>();
 tilesets.Add(tileset);

 mapLayers = new List<MapLayer>();

 mapLayers.Add(layer);

 mapWidth = mapLayers[0].Width;
 mapHeight = mapLayers[0].Height;
}

#endregion

The final change will be to add a method to the Method region of the Camera class, LockCamera, to
lock the camera. You will also want to add a call to the LockCamera method in the Update method of
the Camera class. Change the Method region of the Camera class to the following.

#region Method Region

public void Update(GameTime gameTime)
{
 if (InputHandler.KeyDown(Keys.Left))
 position.X -= speed;
 else if (InputHandler.KeyDown(Keys.Right))
 position.X += speed;

 if (InputHandler.KeyDown(Keys.Up))
 position.Y -= speed;
 else if (InputHandler.KeyDown(Keys.Down))
 position.Y += speed;

 LockCamera();
}

private void LockCamera()
{
 position.X = MathHelper.Clamp(position.X,
 0,
 TileMap.WidthInPixels - viewportRectangle.Width);

 position.Y = MathHelper.Clamp(position.Y,
 0,
 TileMap.HeightInPixels - viewportRectangle.Height);
}

#endregion

The LockCamera method uses the Clamp method of the MathHelper class to clamp the X value of
the camera's position to the world to the width of the map in pixels minus the width of the view port. If
you don't subtract the width of the view port the camera will keep on moving until it reaches the width
of the map and the background color will show through. You also must make sure that the camera's
position is never negative. You do the same for the keeping the map for scrolling off the top of the
screen by making sure its Y coordinate is never less than zero and never greater than the height of the
map in pixels minus the height of the view port.

So, if you run the game now and move to the game play screen you will see the map scroll but not off
the edges of the screen. One thing you will notice is that if you move the map diagonally it will scroll
faster than vertically or horizontally. This can be explained by the Pythagorean Theorem. If you move
the map 8 pixels down and 8 pixels right in one frame you are moving the map the square root of (8 * 8
+ 8 * 8) which is greater than 8 pixels. Fortunately XNA provides a good way to fix that.

Instead of moving the camera when the player wants to move you find out which direction the player
wants to move. You can find that be creating a Vector2 that will have a Y value of 1 if the player wants
to move down or a value of -1 if the player wants to move up. Similarly, it will have an X value of 1 if
the player wants to move right or a value of -1 if the player wants to move left. You take that value and

normalize it. Normalizing a vector is the process of changing it to a vector of length 1. It will still be in
the same direction though. You can multiply that vector by the speed you want to the camera to move
and the camera will move at the same speed in all eight directions. You must check to make sure the
vector is not the zero vector because it can't be normalized because it has no direction. You can change
the Update method of the Camera class to the following.

public void Update(GameTime gameTime)
{
 Vector2 motion = Vector2.Zero;

 if (InputHandler.KeyDown(Keys.Left))
 motion.X = -speed;
 else if (InputHandler.KeyDown(Keys.Right))
 motion.X = speed;

 if (InputHandler.KeyDown(Keys.Up))
 motion.Y = -speed;
 else if (InputHandler.KeyDown(Keys.Down))
 motion.Y = speed;

 if (motion != Vector2.Zero)
 motion.Normalize();

 position += motion * speed;

 LockCamera();
}

I think the next this I will do is demonstrate a tile map with multiple layers. The first thing I will do is
add a new method to the TileMap class called AddLayer. This method will add a new layer to an
existing map. You should make sure that the width and the height of the new layer is the same as width
and height of the map. Add the following method to the TileMap class in the Methods region.

public void AddLayer(MapLayer layer)
{
 if (layer.Width != mapWidth && layer.Height != mapHeight)
 throw new Exception("Map layer size exception");

 mapLayers.Add(layer);
}

The next step is in the LoadContent method of the GamePlayScreen to create a map layer and add it
to the list of layers. If you look at the tile set that I made there are several environmental tiles that are
mostly transparent. I will create a new layer made up mostly of those tiles. The will break up the
monotony of the single tile map that I made. What I will do is create 80 tiles and position them
randomly on the map in a new layer. You can change the LoadConent method to the following.

protected override void LoadContent()
{
 Texture2D tilesetTexture = Game.Content.Load<Texture2D>(@"Tilesets\tileset1");
 tileset = new Tileset(tilesetTexture, 8, 8, 32, 32);

 MapLayer layer = new MapLayer(40, 40);

 for (int y = 0; y < layer.Height; y++)
 {
 for (int x = 0; x < layer.Width; x++)
 {
 Tile tile = new Tile(0, 0);

 layer.SetTile(x, y, tile);
 }

 }

 map = new TileMap(tileset, layer);

 MapLayer splatter = new MapLayer(40, 40);

 Random random = new Random();

 for (int i = 0; i < 80; i++)
 {
 int x = random.Next(0, 40);
 int y = random.Next(0, 40);
 int index = random.Next(2, 14);

 Tile tile = new Tile(index, 0);
 splatter.SetTile(x, y, tile);
 }

 map.AddLayer(splatter);

 base.LoadContent();
}

What the new code does is first create a new layer called splatter. I got this name from a friend of mine
who is a game programmer. He calls tiles with a lot of transparency splatter tiles. He says he splatters
them on his maps to break up the boring monotony of fields. You can also use them to give buildings a
weathered looked or burn holes, lots of different things. I then create an instance of the Random class
to generate some random numbers. That is followed by a for loop that loops 80 times to add some of
the splatter tiles to the layer. Inside of the for loop I first create a X coordinate for the tile between 0
and 40 and then a number in the same range for the Y coordinate. The next number is an integer
between 3 and 14, the index of the splatter tiles in the tile set. I then create a new Tile object and call
the SetTile method passing in the coordinates and the Tile object. After creating the layer I add it to the
map using the AddLayer method I just created.

The next step would be to demonstrate using multiple tile sets on the same map. For that you will need
two tile sets. What I decided to do is to split the tile set that I made into two tile sets. The first tile set
will be woodland environmental tiles and the second city type tiles. You can download the two tile sets
from http://xnagpa.net/xna4/downloads/tilesets2.zip.

Unzip the file with the tile sets, then right click the Tilesets folder in the EyesOfTheDragonContent
project, select Add, and then Existing Item. Add the tileset1.png and tileset2.png files. The next step
is to create a map that uses both tile sets. I will do that in the LoadContent method of the
GamePlayScreen. You can replace the LoadContent method with the following. You can also remove
the field tileset from the fields of the GamePlayScreen as well.

protected override void LoadContent()
{
 base.LoadContent();

 Texture2D tilesetTexture = Game.Content.Load<Texture2D>(@"Tilesets\tileset1");
 Tileset tileset1 = new Tileset(tilesetTexture, 8, 8, 32, 32);

 tilesetTexture = Game.Content.Load<Texture2D>(@"Tilesets\tileset2");
 Tileset tileset2 = new Tileset(tilesetTexture, 8, 8, 32, 32);

 List<Tileset> tilesets = new List<Tileset>();
 tilesets.Add(tileset1);
 tilesets.Add(tileset2);

 MapLayer layer = new MapLayer(40, 40);

http://xnagpa.net/xna4/downloads/tilesets2.zip

 for (int y = 0; y < layer.Height; y++)
 {
 for (int x = 0; x < layer.Width; x++)
 {
 Tile tile = new Tile(0, 0);

 layer.SetTile(x, y, tile);
 }
 }

 MapLayer splatter = new MapLayer(40, 40);

 Random random = new Random();

 for (int i = 0; i < 80; i++)
 {
 int x = random.Next(0, 40);
 int y = random.Next(0, 40);
 int index = random.Next(2, 14);

 Tile tile = new Tile(index, 0);
 splatter.SetTile(x, y, tile);
 }

 splatter.SetTile(1, 0, new Tile(0, 1));
 splatter.SetTile(2, 0, new Tile(2, 1));
 splatter.SetTile(3, 0, new Tile(0, 1));

 List<MapLayer> mapLayers = new List<MapLayer>();
 mapLayers.Add(layer);
 mapLayers.Add(splatter);

 map = new TileMap(tilesets, mapLayers);
}

I moved everything after the call to base.LoadContent so if you want to use controls, or a sprite font,
you will have access to them. What this code does is first load in the texture for the first tile set and
create a Tileset object, tileset1. It then loads in the texture for the second tile set and create another
Tileset object, tileset2. I then created a List<Tileset> and added in the the two Tileset objects. Order is
important here. If you mix up the order the tiles on your map will be mixed up. Then like in the old
LoadContent method I create a MapLayer filled with tile index 0 and tile set 0, which is the grass tile.
I then create a second layer like earlier called splatter. After doing call the SetTile method three times
passing in coordinates (1, 0) to (3, 0) and using tiles from the second tile set. After creating both layers
of the map I create a List<MapLayer> and add the two layers I created to the list. I then call the
constructor of the TileMap class that takes a List<Tileset> and a List<MapLayer> as parameters. If
you build and run now you will get your map with a little building with a door.

You need to update the Draw method of GamePlayScreen. The Draw method of TileMap now needs
a Camera parameter. Update the Draw method of GamePlayScreen to the following.

public override void Draw(GameTime gameTime)
{
 GameRef.SpriteBatch.Begin(
 SpriteSortMode.Immediate,
 BlendState.AlphaBlend,
 SamplerState.PointClamp,
 null,
 null,
 null,
 Matrix.Identity);

 map.Draw(GameRef.SpriteBatch, player.Camera);

 base.Draw(gameTime);

 GameRef.SpriteBatch.End();
}

The tile engine is improving but there is still more work to do but it is a good beginning. So, I think this
is enough for this tutorial. I'd like to try and keep them to a reasonable length so that you don't have too
much to digest at once. I encourage you to visit the news page of my site, XNA Game Programming
Adventures, for the latest news on my tutorials.

Good luck in your game programming adventures!

Jamie McMahon

http://xnagpa.net/news.html
http://xnagpa.net/news.html
http://xnagpa.net/news.html

