
XNA 4.0 RPG Tutorials

Part 3

Even More Core Game Components

I'm writing these tutorials for the new XNA 4.0 framework. The tutorials will make more sense if they
are read in order. You can find the list of tutorials on the XNA 4.0 RPG tutorials page of my web site. I
will be making my version of the project available for download at the end of each tutorial. It will be
included on the page that links to the tutorials.

This is part three in the series. What I'm planning on doing in this tutorial is fill out the start menu and
add a new screen for game play. I'm going to add in a new control as well, a picture box control. I'm
also going to add a new event to the ControlManager class that is fired when a control receives focus.

To get started, load up your project from last time. I'm going to start by adding the new event to the
ControlManager. First, you will want to add in the event. I added in a new Event region to the regions
of the control manager class. I changed the NextControl and PreviousControl method to fire the event
if it is subscribed to. Add the following region near the Field region and change the PreviousControl
and NextControl methods to the following.

#region Event Region

public event EventHandler FocusChanged;

#endregion

public void NextControl()
{
 if (Count == 0)
 return;

 int currentControl = selectedControl;

 this[selectedControl].HasFocus = false;

 do
 {
 selectedControl++;

 if (selectedControl == Count)
 selectedControl = 0;

 if (this[selectedControl].TabStop && this[selectedControl].Enabled)
 {
 if (FocusChanged != null)
 FocusChanged(this[selectedControl], null);

 break;
 }

 } while (currentControl != selectedControl);

 this[selectedControl].HasFocus = true;
}

http://xnagpa.net/xnarpg4tutorials.html

public void PreviousControl()
{
 if (Count == 0)
 return;

 int currentControl = selectedControl;

 this[selectedControl].HasFocus = false;

 do
 {
 selectedControl--;

 if (selectedControl < 0)
 selectedControl = Count - 1;

 if (this[selectedControl].TabStop && this[selectedControl].Enabled)
 {
 if (FocusChanged != null)
 FocusChanged(this[selectedControl], null);

 break;
 }
 } while (currentControl != selectedControl);

 this[selectedControl].HasFocus = true;
}

The new event is called FocusChanged and it will be fired when the control that has focus changes. It
will send the control that received focus as the sender. I changed NextControl and PreviousControl to
fire the event if it is subscribed to. I did that in the if statement that breaks out of the do-while loop if a
control has a tab stop and it is enabled.

Before filling out the start screen I'm going to add in a screen for game play to take place. Right click
the GameScreens folder in the solution explorer, select Add and then Class. Name this new class
GamePlayScreen. This is the code for the class.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;

using XRpgLibrary;

namespace EyesOfTheDragon.GameScreens
{
 public class GamePlayScreen : BaseGameState
 {
 #region Field Region
 #endregion

 #region Property Region
 #endregion

 #region Constructor Region

 public GamePlayScreen(Game game, GameStateManager manager)
 : base(game, manager)
 {
 }

 #endregion

 #region XNA Method Region

 public override void Initialize()
 {
 base.Initialize();
 }

 protected override void LoadContent()
 {
 base.LoadContent();
 }

 public override void Update(GameTime gameTime)
 {
 base.Update(gameTime);
 }

 public override void Draw(GameTime gameTime)
 {
 base.Draw(gameTime);
 }

 #endregion

 #region Abstract Method Region
 #endregion
 }
}

Like the StartMenuScreen, this is just a bare bones class that inherits from BaseGameState. There are
using statements to bring a few of the XNA Framework classes into scope and our XRpgLibrary. The
next step is to add in a field for the GamePlayScreen in the Game1 class and create an instance in the
constructor. Add the following field to the Game State region. Also, change the constructor to the
following.

public GamePlayScreen GamePlayScreen;

public Game1()
{
 graphics = new GraphicsDeviceManager(this);

 graphics.PreferredBackBufferWidth = screenWidth;
 graphics.PreferredBackBufferHeight = screenHeight;

 ScreenRectangle = new Rectangle(
 0,
 0,
 screenWidth,
 screenHeight);

 Content.RootDirectory = "Content";

 Components.Add(new InputHandler(this));

 stateManager = new GameStateManager(this);
 Components.Add(stateManager);

 TitleScreen = new TitleScreen(this, stateManager);
 StartMenuScreen = new StartMenuScreen(this, stateManager);
 GamePlayScreen = new GamePlayScreen(this, stateManager);

 stateManager.ChangeState(TitleScreen);
}

I want to add in a new control, the picture box control. Right click the Controls folder in the
XRpgLibary project, select Add and then Class. Name this class PictureBox. This is the code for the

PictureBox class.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;

namespace XRpgLibrary.Controls
{
 public class PictureBox : Control
 {
 #region Field Region

 Texture2D image;
 Rectangle sourceRect;
 Rectangle destRect;

 #endregion

 #region Property Region

 public Texture2D Image
 {
 get { return image; }
 set { image = value; }
 }

 public Rectangle SourceRectangle
 {
 get { return sourceRect; }
 set { sourceRect = value; }
 }

 public Rectangle DestinationRectangle
 {
 get { return destRect; }
 set { destRect = value; }
 }

 #endregion

 #region Constructors

 public PictureBox(Texture2D image, Rectangle destination)
 {
 Image = image;
 DestinationRectangle = destination;
 SourceRectangle = new Rectangle(0, 0, image.Width, image.Height);
 Color = Color.White;
 }

 public PictureBox(Texture2D image, Rectangle destination, Rectangle source)
 {
 Image = image;
 DestinationRectangle = destination;
 SourceRectangle = source;
 Color = Color.White;
 }

 #endregion

 #region Abstract Method Region

 public override void Update(GameTime gameTime)
 {

 }

 public override void Draw(SpriteBatch spriteBatch)
 {
 spriteBatch.Draw(image, destRect, sourceRect, Color);
 }

 public override void HandleInput(PlayerIndex playerIndex)
 {
 }

 #endregion

 #region Picture Box Methods

 public void SetPosition(Vector2 newPosition)
 {
 destRect = new Rectangle(
 (int)newPosition.X,
 (int)newPosition.Y,
 sourceRect.Width,
 sourceRect.Height);
 }

 #endregion
 }
}

There are a few extra using statements to bring the XNA Framework, XNA Framework Input, and
XNA Framework Graphics classes into scope. The class inherits from the base abstract class Control
so it can be added to the ControlManager class.

There are three new fields and properties to expose them. The fields are image, destRect, and
sourceRect. The fields that expose them are Image, DestinationRectangle, and SourceRectangle
respectively. The first one image is of course the image for the picture box and is a Texture2D. The
next one destRect is the destination rectangle where the image is to be drawn. The last, sourceRect, is
the source rectangle in the image. This will be handy down the road as you will see.

There are two constructors in this class. The first takes a Texture2D for the picture box and a
Rectangle for the destination of the image on the screen. That constructor assigns the image field and
destRect field to the values passed in. It also sets the sourceRect field to be the entire image using zero
for the X and Y properties of the rectangle and the Width and Height properties of the Texture2D for
the Width and Height of the rectangle. That means the entire Texture2D will be used as the source
rectangle. The second constructor takes a Texture2D, and two Rectangle parameters. The Texture2D
is the image. The first Rectangle is the destination and the second Rectangle is the source in the
image. It just assigns the fields using the parameters passed in. I also set the Color property to white.

The base class Control has three abstract methods that must be implemented: Draw, Update, and
HandleInput. They don't have to do anything however. The one that I added code to was the Draw
method. The Draw method draws the Texture2D using the image, destRect, sourceRect, and color
fields.

Bixel, a member of my forum, had a nice idea about updating the picture box a little. You can read his
idea in this topic. I added in some of the functionality by adding a SetPosition method that takes a
Vector2 for the new position of the picture box. I create a new destination rectangle by casing the X
and Y properties of the vector passed to integers and use the Width and Height properties of the source
rectangle.

http://xnagpa.net/forum//viewtopic.php?id=93

Before I get to the StartMenuScreen I want to add in a couple graphics for GUI controls. Again, I'd
like to thank Tuckbone from my forum for providing the graphics. You can download the graphics from
http://xnagpa.net/xna4/downloads/guigraphics.zip. After you've downloaded the graphics extract them
to a folder. Go back to your game and right click the EyesOfTheDragonContent project, select Add
and then New Folder. Name this new folder GUI. Right click the GUI folder, select Add and then
Existing Item. Navigate to where you extracted the controls and add them all.

Open up the code for the StartMenuScreen. I made a lot of changes to the screen as it was basically a
place holder before. I just noticed that I had the code for checking if the player presses Escape in the
Draw method. That was a mistake on my part. This is the code for the StartMenuScreen.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;
using Microsoft.Xna.Framework.Content;

using XRpgLibrary;
using XRpgLibrary.Controls;

namespace EyesOfTheDragon.GameScreens
{
 public class StartMenuScreen : BaseGameState
 {
 #region Field region

 PictureBox backgroundImage;
 PictureBox arrowImage;
 LinkLabel startGame;
 LinkLabel loadGame;
 LinkLabel exitGame;
 float maxItemWidth = 0f;

 #endregion

 #region Property Region
 #endregion

 #region Constructor Region

 public StartMenuScreen(Game game, GameStateManager manager)
 : base(game, manager)
 {
 }

 #endregion

 #region XNA Method Region

 public override void Initialize()
 {
 base.Initialize();
 }

 protected override void LoadContent()
 {
 base.LoadContent();

 ContentManager Content = Game.Content;

http://xnagpa.net/xna4/downloads/guigraphics.zip

 backgroundImage = new PictureBox(
 Content.Load<Texture2D>(@"Backgrounds\titlescreen"),
 GameRef.ScreenRectangle);
 ControlManager.Add(backgroundImage);

 Texture2D arrowTexture = Content.Load<Texture2D>(@"GUI\leftarrowUp");

 arrowImage = new PictureBox(
 arrowTexture,
 new Rectangle(
 0,
 0,
 arrowTexture.Width,
 arrowTexture.Height));
 ControlManager.Add(arrowImage);

 startGame = new LinkLabel();
 startGame.Text = "The story begins";
 startGame.Size = startGame.SpriteFont.MeasureString(startGame.Text);
 startGame.Selected +=new EventHandler(menuItem_Selected);

 ControlManager.Add(startGame);

 loadGame = new LinkLabel();
 loadGame.Text = "The story continues";
 loadGame.Size = loadGame.SpriteFont.MeasureString(loadGame.Text);
 loadGame.Selected += menuItem_Selected;

 ControlManager.Add(loadGame);

 exitGame = new LinkLabel();
 exitGame.Text = "The story ends";
 exitGame.Size = exitGame.SpriteFont.MeasureString(exitGame.Text);
 exitGame.Selected += menuItem_Selected;

 ControlManager.Add(exitGame);

 ControlManager.NextControl();

 ControlManager.FocusChanged += new EventHandler(ControlManager_FocusChanged);
 Vector2 position = new Vector2(350, 500);

 foreach (Control c in ControlManager)
 {
 if (c is LinkLabel)
 {
 if (c.Size.X > maxItemWidth)
 maxItemWidth = c.Size.X;

 c.Position = position;
 position.Y += c.Size.Y + 5f;
 }
 }

 ControlManager_FocusChanged(startGame, null);
 }

 void ControlManager_FocusChanged(object sender, EventArgs e)
 {
 Control control = sender as Control;
 Vector2 position = new Vector2(control.Position.X + maxItemWidth + 10f,
control.Position.Y);
 arrowImage.SetPosition(position);
 }

 private void menuItem_Selected(object sender, EventArgs e)
 {
 if (sender == startGame)
 {
 StateManager.PushState(GameRef.GamePlayScreen);

 }

 if (sender == loadGame)
 {
 StateManager.PushState(GameRef.GamePlayScreen);
 }

 if (sender == exitGame)
 {
 GameRef.Exit();
 }
 }

 public override void Update(GameTime gameTime)
 {
 ControlManager.Update(gameTime, playerIndexInControl);

 base.Update(gameTime);
 }

 public override void Draw(GameTime gameTime)
 {
 GameRef.SpriteBatch.Begin();

 base.Draw(gameTime);

 ControlManager.Draw(GameRef.SpriteBatch);

 GameRef.SpriteBatch.End();
 }

 #endregion

 #region Game State Method Region
 #endregion

 }
}

You may be wondering why I haven't added a menu component to the game when I have a menu on
this screen. You could add a menu component and use one, and there is nothing wrong with that route. I
instead decided to use the controls that I created and the control manager. The way the menu is going to
work is it is going to display the items using link labels. The currently selected link label will have an
arrow to the right of it.

There are some using statements to bring a few of the XNA Framework and our XRpgLibrary name
spaces into scope. The class inherits from BaseGameState so it can be used in our game state manager.

There are six fields in the class. The first two are PictureBox controls. The one is for the background
image and the other is for the arrow. There are also three LinkLabel controls, one for each of the three
menu items: one to start a new game, one to load an old game, and one to exit the game. The last field
is a float and it is used to control where the arrow appears in the menu. It holds the maximum width of
the link labels. The constructor for the class just calls the constructor of the base class with the values
passed in.

The LoadContent method is where I create the controls on the form, wire their event handlers, and
position them on the form. Again, you want to do this after the call to base.LoadContent so that the
ControlManager exists.

The first control I create is the PictureBox for the background image. I load in the same image from

the title screen and set the destination rectangle of the picture box to our ScreenRectangle. I then add it
to the ControlManager.

I then load in the image for the other picture box. I create the picture box for that control passing in the
image I loaded and a rectangle at coordinates (0, 0) with the width and height of the image. Its position
at the moment isn't important as it will be changed at the end of the method.

The next step is to create the startGame LinkLabel. I set the Text property to "The story begins." and
set the Size property to the size of the string using the MeasureString method from the SpriteFont
property. I then wire the event handler for the Selected event but not the default handler. I set it to a
handler that will handle the Selected event of all menu items. I then add it to the ControlManager. I
create the loadGame and exitGame controls the same way. I then call the NextControl method of the
control manager to have startGame as the currently selected control. I then wire the event handler for
the FocusChanged event of the ControlManager.

I create a Vector2 that holds the position of the first LinkLabel on the screen. Then I loop over all of
the controls that were added to the control manage. In the loop I check to see if the control is a
LinkLabel. If it is I compare the X property of its size with maxItemWidth field. If it is greater I set
maxItemWidth to that value. I then set the Position property of the control to the Vector2 I created. I
then increase the Y property of the Vector2 by the Y property of the Size property of the control plus
five pixels.

At the end of the method I call the FocusChanged event handler passing in the startGame control and
null. What this does is call the code that positions the arrow to the right of the sender. In this case, the
arrow will be to the right of the startGame item.

The ControlManager_FocusChanged method sets the sender parameter as a control. I then create a
Vector2, position, using X value of the Position property of the control and the maxItemWidth field
plus 10 pixels for the X value of the Vector2. For the Y value of the vector I use the Y value of the
controls position.

In the menuItem_Selected method I check to see which link label was selected. I compare the sender
parameter with the different link labels. If it is the startGame or loadGame link label I call the push
the GamePlayScreen on top of the stack. If it was the exitGame link label I exit out of the game. It
would probably be a good idea to have a little pop up screen that asks if that is really what you want to
do and I will add that in some time.

In the Update method I call the Update method of the ControlManager class. I pass the gameTime
parameter from the Update method and playerIndexInControl, a field of PlayerIndex that I added to
the BaseGameState screen last tutorial. For the Draw method I call the Begin method of the sprite
batch from our game before the call to base.Draw. This allows any child components to be drawn
before we draw our components. I then call the Draw method of the ControlManager. Finally, the call
to End of the sprite batch.

I think this is enough for this tutorial. I'd like to try and keep them to a reasonable length so that you
don't have too much to digest at once. I encourage you to visit the news page of my site, XNA Game
Programming Adventures, for the latest news on my tutorials.

Good luck in your game programming adventures!

http://xnagpa.net/news.html
http://xnagpa.net/news.html

Jamie McMahon

