
XNA 4.0 RPG Tutorials

Part 2

More Core Game Components

I'm writing these tutorials for the new XNA 4.0 framework. The tutorials will make more sense if they
are read in order. You can find the list of tutorials on the XNA 4.0 RPG tutorials page of my web site. I
will be making my version of the project available for download at the end of each tutorial. It will be
included on the page that links to the tutorials.

This is part two in my series of XNA 4.0 Role Playing Game tutorials. I'm going to be adding in a few
more core components in this tutorial that you will be using through out the series. Go a head and load
up your solution from last time.

The first thing I'm going to do is to update the InputHandler class to include Xbox 360 game pad
input. I renamed the field and property regions from the last tutorial to include Keyboard. I will give
you the entire code for the class and explain the game pad specific code.

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Audio;
using Microsoft.Xna.Framework.Content;
using Microsoft.Xna.Framework.GamerServices;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;
using Microsoft.Xna.Framework.Media;

namespace XRpgLibrary
{
 public class InputHandler : Microsoft.Xna.Framework.GameComponent
 {
 #region Keyboard Field Region

 static KeyboardState keyboardState;
 static KeyboardState lastKeyboardState;

 #endregion

 #region Game Pad Field Region

 static GamePadState[] gamePadStates;
 static GamePadState[] lastGamePadStates;

 #endregion

 #region Keyboard Property Region

 public static KeyboardState KeyboardState
 {
 get { return keyboardState; }
 }

 public static KeyboardState LastKeyboardState
 {

http://xnagpa.net/xnarpg4tutorials.html

 get { return lastKeyboardState; }
 }

 #endregion

 #region Game Pad Property Region

 public static GamePadState[] GamePadStates
 {
 get { return gamePadStates; }
 }

 public static GamePadState[] LastGamePadStates
 {
 get { return lastGamePadStates; }
 }

 #endregion

 #region Constructor Region

 public InputHandler(Game game)
 : base(game)
 {
 keyboardState = Keyboard.GetState();

 gamePadStates = new GamePadState[Enum.GetValues(typeof(PlayerIndex)).Length];

 foreach (PlayerIndex index in Enum.GetValues(typeof(PlayerIndex)))
 gamePadStates[(int)index] = GamePad.GetState(index);
 }

 #endregion

 #region XNA methods

 public override void Initialize()
 {

 base.Initialize();
 }

 public override void Update(GameTime gameTime)
 {
 lastKeyboardState = keyboardState;
 keyboardState = Keyboard.GetState();

 lastGamePadStates = (GamePadState[])gamePadStates.Clone();
 foreach (PlayerIndex index in Enum.GetValues(typeof(PlayerIndex)))
 gamePadStates[(int)index] = GamePad.GetState(index);

 base.Update(gameTime);
 }

 #endregion

 #region General Method Region

 public static void Flush()
 {
 lastKeyboardState = keyboardState;
 }

 #endregion

 #region Keyboard Region

 public static bool KeyReleased(Keys key)
 {
 return keyboardState.IsKeyUp(key) &&

 lastKeyboardState.IsKeyDown(key);
 }

 public static bool KeyPressed(Keys key)
 {
 return keyboardState.IsKeyDown(key) &&
 lastKeyboardState.IsKeyUp(key);
 }

 public static bool KeyDown(Keys key)
 {
 return keyboardState.IsKeyDown(key);
 }

 #endregion

 #region Game Pad Region

 public static bool ButtonReleased(Buttons button, PlayerIndex index)
 {
 return gamePadStates[(int)index].IsButtonUp(button) &&
 lastGamePadStates[(int)index].IsButtonDown(button);
 }

 public static bool ButtonPressed(Buttons button, PlayerIndex index)
 {
 return gamePadStates[(int)index].IsButtonDown(button) &&
 lastGamePadStates[(int)index].IsButtonUp(button);
 }

 public static bool ButtonDown(Buttons button, PlayerIndex index)
 {
 return gamePadStates[(int)index].IsButtonDown(button);
 }

 #endregion
 }
}

There can be four game pads connected to the Xbox 360 so I have arrays for the current state of each
game pad and the state of each game pad in the last frame of the game. The gamePadStates array
holds the states of the game pads in the current frame and the lastGamePadStates array holds the
states of the game pads in the last frame of the game. There are read only properties to expose these
fields. The nice thing about using array properties is you can get the entire array or the index you are
interested in. So, if you wanted all of the game pad states you could get them or if you want a specific
game pad you can get that as well.

The constructor creates the gamePadStates array using a little trickery. The Enum class has a method
GetValues that can return all of the values of an enumeration. The PlayerIndex enum has entries for
each game pad, from One to Four. The Length property returns the length of an array. After creating
the array I set the values of the array using a foreach loop and the return of the GetValues array to loop
through each of the values in PlayerIndex. Inside the loop I call the GetState method of GamePad
passing in index, the current PlayerIndex, casting it to an integer.

In the Update method I first assign the gamePadStates to lastGamePadStates using the Clone
method of the array class. The Clone method returns an exact copy of the array, you have to cast it to
be the right type though. After assigning the last states I get the current states using the same process as
I did in the constructor.

The three new methods for game pads work the same way as the methods for the keyboard. The

difference is that they take a Buttons parameter for the button you are interested in and a PlayerIndex
parameter for the game pad. For the release you check if a button is up in this frame and down in the
last. For a press you check if a button that was up in the last frame is down in this frame.

What I'm going to add next are some GUI controls and a class to manage controls on the form. One
thing about working with XNA is that you don't have all of the nice GUI controls that you're used to
working with in Windows. You have to make the controls yourself. It is a good idea to also have a class
that manages all of the controls in a game state, or game screen. The first step is to create a base class
for all controls. Right click the XRpgLibrary project in the solution explorer, select Add and then
New Folder. Name this new folder Controls. Now, right click the Controls folder, select Add and then
Class. Name this new class Control. The code for that class follow next.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;

namespace XRpgLibrary.Controls
{
 public abstract class Control
 {
 #region Field Region

 protected string name;
 protected string text;
 protected Vector2 size;
 protected Vector2 position;
 protected object value;
 protected bool hasFocus;
 protected bool enabled;
 protected bool visible;
 protected bool tabStop;
 protected SpriteFont spriteFont;
 protected Color color;
 protected string type;

 #endregion

 #region Event Region

 public event EventHandler Selected;

 #endregion

 #region Property Region

 public string Name
 {
 get { return name; }
 set { name = value; }
 }

 public string Text
 {
 get { return text; }
 set { text = value; }
 }

 public Vector2 Size
 {
 get { return size; }

 set { size = value; }
 }

 public Vector2 Position
 {
 get { return position; }
 set
 {
 position = value;
 position.Y = (int)position.Y;
 }
 }

 public object Value
 {
 get { return value; }
 set { this.value = value; }
 }

 public bool HasFocus
 {
 get { return hasFocus; }
 set { hasFocus = value; }
 }

 public bool Enabled
 {
 get { return enabled; }
 set { enabled = value; }
 }

 public bool Visible
 {
 get { return visible; }
 set { visible = value; }
 }

 public bool TabStop
 {
 get { return tabStop; }
 set { tabStop = value; }
 }

 public SpriteFont SpriteFont
 {
 get { return spriteFont; }
 set { spriteFont = value; }
 }

 public Color Color
 {
 get { return color; }
 set { color = value; }
 }

 public string Type
 {
 get { return type; }
 set { type = value; }
 }

 #endregion

 #region Constructor Region

 public Control()
 {
 Color = Color.White;
 Enabled = true;
 Visible = true;

 SpriteFont = ControlManager.SpriteFont;
 }

 #endregion

 #region Abstract Methods

 public abstract void Update(GameTime gameTime);
 public abstract void Draw(SpriteBatch spriteBatch);
 public abstract void HandleInput(PlayerIndex playerIndex);

 #endregion

 #region Virtual Methods

 protected virtual void OnSelected(EventArgs e)
 {
 if (Selected != null)
 {
 Selected(this, e);
 }
 }

 #endregion
 }
}

This class has many protected fields that are common to controls. Public properties to expose these
fields, so they can be overriden in inherited classes. There is a protected virtual method, OnSelected,
that is used to fire the event Selected if it is subscribed to. There are also three abstract methods that
any class that inherits from control has to implement. The one, Update, allows the control
to be updated. The second, Draw, allows the control to be drawn. The last, HandleInput, is used to
handle the input for the control. While these methods must be implemented they can be empty.

Controls have many things in common. I've picked a few of the more important ones. Controls have a
name that will identify it. They have text that they may draw. They will have a position on the screen.
They also have a size. The value field is a little more abstract. You can use this field to associate
something with the control. Since the field is of type object you can assign any class to this field. One
property of note is the Position property. I cast the Y component of the position to an integer. One thing
I found with XNA is it doesn't like drawing text when the Y component of the position isn't an integer
value.

Controls can also have focus, be visible or enabled, and be a tab stop. The last one is another peculiar
field. You will be able to move through all of the controls on a screen and skip over ones that you may
not want selected, like a label. The other field that a control will have is a type field that is a string.

Controls also have a SpriteFont associated with them and a Color. For right now there is also an event
associated with controls. This is the Selected event and will be triggered when the player selects the
control.

The constructor of the Control class assigns the color of the control to white. It also sets its visible and
enabled properties to true. It also sets the SpriteFont of the control to a static SpriteFont property of
the ControlManager, a class that I will be designing next.

Right click the Controls folder in the XRpgLibrary project, select Add and then Class. Name this
new class ControlManager. This is the code for the ControlManager class.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;

namespace XRpgLibrary.Controls
{
 public class ControlManager : List<Control>
 {
 #region Fields and Properties

 int selectedControl = 0;

 static SpriteFont spriteFont;

 public static SpriteFont SpriteFont
 {
 get { return spriteFont; }
 }

 #endregion

 #region Constructors

 public ControlManager(SpriteFont spriteFont)
 : base()
 {
 ControlManager.spriteFont = spriteFont;
 }

 public ControlManager(SpriteFont spriteFont, int capacity)
 : base(capacity)
 {
 ControlManager.spriteFont = spriteFont;
 }

 public ControlManager(SpriteFont spriteFont, IEnumerable<Control> collection) :
 base(collection)
 {
 ControlManager.spriteFont = spriteFont;
 }

 #endregion

 #region Methods

 public void Update(GameTime gameTime, PlayerIndex playerIndex)
 {
 if (Count == 0)
 return;

 foreach (Control c in this)
 {
 if (c.Enabled)
 c.Update(gameTime);

 if (c.HasFocus)
 c.HandleInput(playerIndex);
 }

 if (InputHandler.ButtonPressed(Buttons.LeftThumbstickUp, playerIndex) ||
 InputHandler.ButtonPressed(Buttons.DPadUp, playerIndex) ||
 InputHandler.KeyPressed(Keys.Up))
 PreviousControl();

 if (InputHandler.ButtonPressed(Buttons.LeftThumbstickDown, playerIndex) ||
 InputHandler.ButtonPressed(Buttons.DPadDown, playerIndex) ||
 InputHandler.KeyPressed(Keys.Down))
 NextControl();
 }

 public void Draw(SpriteBatch spriteBatch)
 {
 foreach (Control c in this)
 {
 if (c.Visible)
 c.Draw(spriteBatch);
 }
 }

 public void NextControl()
 {
 if (Count == 0)
 return;

 int currentControl = selectedControl;

 this[selectedControl].HasFocus = false;

 do
 {
 selectedControl++;

 if (selectedControl == Count)
 selectedControl = 0;

 if (this[selectedControl].TabStop && this[selectedControl].Enabled)
 break;

 } while (currentControl != selectedControl);

 this[selectedControl].HasFocus = true;
 }

 public void PreviousControl()
 {
 if (Count == 0)
 return;

 int currentControl = selectedControl;

 this[selectedControl].HasFocus = false;

 do
 {
 selectedControl--;

 if (selectedControl < 0)
 selectedControl = Count - 1;

 if (this[selectedControl].TabStop && this[selectedControl].Enabled)
 break;

 } while (currentControl != selectedControl);

 this[selectedControl].HasFocus = true;
 }

 #endregion
 }
}

There are a few using statements in this class to bring some of the XNA Framework classes into scope.

The class inherits from List<T>. and will have all of the functionality of that class. This makes adding
and removing controls to the manager exceedingly easy.

The List<T> class has three constructors so I have three constructors that will call the constructor of
the List<T> class with the appropriate parameter. The constructors also take a SpriteFont parameter
that all controls can use for their SpriteFont field. You can set the SpriteFont field of a control to use
a different sprite font. This way when a control is first created it is easy to assign it a sprite font as the
spriteFont field is static and can be accessed using a static property. The other field in the class is the
selectedIndex field. This field holds which control is currently selected in the control manager.

There are a few public methods in this class. The Update method is used to update the controls and
handle the input for the currently selected control. The Draw method is used to draw the controls on
the screen. The other methods NextControl and PreviousControl are for moving from control to
control.

The Update method takes as parameters the GameTime object from the game and the PlayerIndex of
the game pad that you want to handle input from. The Update method first checks to see if there are
controls on the screen. If there are none you can exit the method. There is next a foreach loop that loops
through all of the controls on the screen. Inside the loop I check to see if the control is enabled using
the Enabled property and if it is call the Update method of the control. Next there is a check to see if
the control has focus and if it does calls the HandleInput method of the control. To move between
controls you can use the Up and Down keys on the keyboard, the Up and Down directions on the
direction pad, or the Up and Down directions of the left thumb stick. If any of the Up directions
evaluate to true the PreviousControl method is called. Similarly, if any of the Down directions
evaluate to true the NextControl method is called.

The Draw method takes the current SpriteBatch object as a parameter. There is a foreach loop that
loops through all of the controls. Inside the loop there is a check to see if the control is visible. If it is, it
calls the Draw method of the control.

The NextControl and PreviousControl methods aren't as robust as they should be. As I go I will
update them so that they are more robust and to prevent exceptions from being thrown if something
unexpected happens.

The NextControl method checks to make sure there are controls on the screen. If there are no controls
there is nothing to do so it exits. I set a local variable to be the currently selected control. The reason is
that I will loop through the controls and to know when to stop I needed a reference to the current
control that had focus. I use the this keyword to reference the List<Control> part of the class and set
the HasFocus method to false for the selected control.

There is next a do-while loop that loops through the controls until it finds a suitable control or reaches
the starting control. The first step in moving the focus is to increase the selectedControl variable to
move to the next control in the list. I check to see if the selectedControl field is equal to the Count
property. If it is you have reached that last control and I set the selectedControl field back to zero, the
first control. The next if statement checks to see if the control referenced by selectedControl is a
TabStop and is Enabled. If it is I break out of the loop. Finally I set the HasFocus property to true so
the control is selected.

The PreviousControl method has the same format as the NextControl method but instead of

incrementing the selectedControl field it decreases the selectedControl field. You first check to see if
there are controls to work with. Save the value of the selectedControl field and set the HasFocus
property of the control to false. In the do-while loop you first decrease the selectedControl field. If it is
less than zero you set it to the number of controls minus one. If the control is a TabStop control and the
control is Enabled I break out of the loop. Before exiting you set the HasFocus property to true.

With the control manager, it is now time to add in some specific controls. The control that I'm going to
add in first is a simple Label control that can be used to draw text. The advantage of using the control
manager and controls is you can group controls for easy access and you can loop through them using a
foreach loop. Right click the Controls folder in the XRpgLibrary project, select Add and then Class.
Name this new class Label. This is the code for the Label class.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;

namespace XRpgLibrary.Controls
{
 public class Label : Control
 {
 #region Constructor Region

 public Label()
 {
 tabStop = false;
 }

 #endregion

 #region Abstract Methods

 public override void Update(GameTime gameTime)
 {
 }

 public override void Draw(SpriteBatch spriteBatch)
 {
 spriteBatch.DrawString(SpriteFont, Text, Position, Color);
 }

 public override void HandleInput(PlayerIndex playerIndex)
 {
 }

 #endregion
 }
}

The class looks simple but coupled with the ControlManager it ends up being quite powerful. There
are using statements to bring a couple of the XNA Framework name spaces into scope. The constructor
of the Label class sets the tabStop field to false by default so Labels can't be selected by default. You
can of course override this behavior if you need to. The Update and HandleInput methods do nothing
at the moment. The Draw method calls the DrawString method of the SpriteBatch class to draw the
text.

Another useful control to add is a LinkLabel. It is like a Label but I allow it to be selected. You could

get away with adding this to the Label class but I like separating them into different controls. Right
click the Controls folder in the XRpgLibrary project, select Add and then Class. Name this new class
LinkLabel. This is the code for the LinkLabel class.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;

namespace XRpgLibrary.Controls
{
 public class LinkLabel : Control
 {
 #region Fields and Properties

 Color selectedColor = Color.Red;

 public Color SelectedColor
 {
 get { return selectedColor; }
 set { selectedColor = value; }
 }

 #endregion

 #region Constructor Region

 public LinkLabel()
 {
 TabStop = true;
 HasFocus = false;
 Position = Vector2.Zero;
 }

 #endregion

 #region Abstract Methods

 public override void Update(GameTime gameTime)
 {
 }

 public override void Draw(SpriteBatch spriteBatch)
 {
 if (hasFocus)
 spriteBatch.DrawString(SpriteFont, Text, Position, selectedColor);
 else
 spriteBatch.DrawString(SpriteFont, Text, Position, Color);
 }

 public override void HandleInput(PlayerIndex playerIndex)
 {
 if (!HasFocus)
 return;

 if (InputHandler.KeyReleased(Keys.Enter) ||
 InputHandler.ButtonReleased(Buttons.A, playerIndex))
 base.OnSelected(null);
 }

 #endregion
 }
}

Again, the class is simplistic but combined with the control manager it can be quite powerful. There are
a couple of using statements to bring some of the XNA Framework classes into scope. There is a new
field and property associated with this control, selectedColor and SelectedColor. They are used in
drawing the control in a different color if it is selected.

The constructor sets the TabStop property to true so it can receive focus. It also sets the HasFocus
property to false initially so the control does not have focus and will not be updated or handle input.
The Draw method draws the control in its regular color if it is not select and in the selected color if it
does have focus. The HandleInput method returns if control does not have focus. If it does it checks to
see if the Enter key or the A button on the game pad have been released. If they have, they call the
OnSelected method of the Control class passing null for the EventArgs parameter.

In other tutorials I will be adding in other controls. For now though, there are enough controls to move
between two screens. What I'm going to do is add in a game state, StartMenuScreen. This state will be
a menu that the player will choose items from a menu on how they wish to proceed. To move from the
TitleScreen to the StartMenuScreen there will be a link label on the TitleScreen that if selected will
move to the StartMenuScreen.

To use the ControlManager you need a SpriteFont. Right click the EyesOfTheDragonContent
project, select Add and then New Folder. Name this new folder Fonts. Right click the Fonts folder,
select Add and then New Item. Select the Sprite Font entry and name it ControlFont. Change the
Size element to 20.

I first want to extend the BaseGameState a little. I want to add in a ControlManager to that state.
Change the BaseGameState class to the following.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using XRpgLibrary;
using XRpgLibrary.Controls;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Content;
using Microsoft.Xna.Framework.Graphics;

namespace EyesOfTheDragon.GameScreens
{
 public abstract partial class BaseGameState : GameState
 {
 #region Fields region

 protected Game1 GameRef;

 protected ControlManager ControlManager;

 protected PlayerIndex playerIndexInControl;

 #endregion

 #region Properties region
 #endregion

 #region Constructor Region

 public BaseGameState(Game game, GameStateManager manager)
 : base(game, manager)

 {
 GameRef = (Game1)game;

 playerIndexInControl = PlayerIndex.One;
 }

 #endregion

 #region XNA Method Region

 protected override void LoadContent()
 {
 ContentManager Content = Game.Content;

 SpriteFont menuFont = Content.Load<SpriteFont>(@"Fonts\ControlFont");
 ControlManager = new ControlManager(menuFont);

 base.LoadContent();
 }

 public override void Update(GameTime gameTime)
 {
 base.Update(gameTime);
 }

 public override void Draw(GameTime gameTime)
 {
 base.Draw(gameTime);
 }

 #endregion
 }
}

I added in the over rides for the LoadContent, Update, and Draw methods. The Update and Draw
methods just call those methods of the base class. I create a new instance of the ControlManager class
in the LoadContent method. I get the ContentManager from our game using the Content property. I
load in the menu font and create the control manager instance.

I want to add another screen to the game before I show the use of the ControlManager. Right click the
GameScreens, select Add and then Class. Name this new class StartMenuScreen. This is the code for
that class.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework.Input;
using XRpgLibrary;

namespace EyesOfTheDragon.GameScreens
{
 public class StartMenuScreen : BaseGameState
 {
 #region Field region
 #endregion

 #region Property Region
 #endregion

 #region Constructor Region

 public StartMenuScreen(Game game, GameStateManager manager)

 : base(game, manager)
 {
 }

 #endregion

 #region XNA Method Region

 public override void Initialize()
 {
 base.Initialize();
 }

 protected override void LoadContent()
 {
 base.LoadContent();
 }

 public override void Update(GameTime gameTime)
 {
 base.Update(gameTime);
 }

 public override void Draw(GameTime gameTime)
 {
 if (InputHandler.KeyReleased(Keys.Escape))
 {
 Game.Exit();
 }

 base.Draw(gameTime);
 }

 #endregion

 #region Game State Method Region
 #endregion
 }
}

This is state a skeleton, for now. In the next tutorial I will add more to it. It is here so I can show how to
move from one game state to another. I did add in a condition that checks to see if the Escape key is
released. If it is, the game exits. This isn't ideal behavior for a game. I will fix that in another tutorial.
Switch back to the code for the Game1 class. Add a field for this screen just below the TitleScreen
field.

public StartMenuScreen StartMenuScreen;

With that done, you will want to create a StartMenuScreen in the Game1 constructor. Change that
constructor to the following.

public Game1()
{
 graphics = new GraphicsDeviceManager(this);

 graphics.PreferredBackBufferWidth = screenWidth;
 graphics.PreferredBackBufferHeight = screenHeight;

 ScreenRectangle = new Rectangle(
 0,
 0,
 screenWidth,
 screenHeight);

 Content.RootDirectory = "Content";

 Components.Add(new InputHandler(this));

 stateManager = new GameStateManager(this);
 Components.Add(stateManager);

 TitleScreen = new TitleScreen(this, stateManager);
 StartMenuScreen = new GameScreens.StartMenuScreen(this, stateManager);

 stateManager.ChangeState(TitleScreen);
}

All you are doing is creating an instance of the StartMenuScreen and assigning it to the field in the
Game1 class. Flip back to the code for the TitleScreen. The changes I made were extensive so I will
give you the code for the entire class. Change the code for the TitleScreen class to the following.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Content;
using Microsoft.Xna.Framework.Graphics;

using XRpgLibrary;
using XRpgLibrary.Controls;

namespace EyesOfTheDragon.GameScreens
{
 public class TitleScreen : BaseGameState
 {
 #region Field region

 Texture2D backgroundImage;
 LinkLabel startLabel;

 #endregion

 #region Constructor region

 public TitleScreen(Game game, GameStateManager manager)
 : base(game, manager)
 {
 }

 #endregion

 #region XNA Method region

 protected override void LoadContent()
 {
 ContentManager Content = GameRef.Content;

 backgroundImage = Content.Load<Texture2D>(@"Backgrounds\titlescreen");

 base.LoadContent();

 startLabel = new LinkLabel();
 startLabel.Position = new Vector2(350, 600);
 startLabel.Text = "Press ENTER to begin";
 startLabel.Color = Color.White;
 startLabel.TabStop = true;
 startLabel.HasFocus = true;
 startLabel.Selected += new EventHandler(startLabel_Selected);

 ControlManager.Add(startLabel);
 }

 public override void Update(GameTime gameTime)
 {
 ControlManager.Update(gameTime, PlayerIndex.One);

 base.Update(gameTime);
 }

 public override void Draw(GameTime gameTime)
 {
 GameRef.SpriteBatch.Begin();

 base.Draw(gameTime);

 GameRef.SpriteBatch.Draw(
 backgroundImage,
 GameRef.ScreenRectangle,
 Color.White);

 ControlManager.Draw(GameRef.SpriteBatch);

 GameRef.SpriteBatch.End();
 }

 #endregion

 #region Title Screen Methods

 private void startLabel_Selected(object sender, EventArgs e)
 {
 StateManager.PushState(GameRef.StartMenuScreen);
 }

 #endregion
 }
}

The first change was the addition of a LinkLabel control to the field section. I will wire an event
handler for the Selected event of the LinkLabel. In the LoadContent method I create the link label
and add it to the control manager. It is important that you construct controls on game screens after the
call to base.LoadContent. The reason is the control manager will not exist until after that. I set the
position of the LinkLabel, I did this by trial and error, the text, color, tab stop, and has focus
properties. I also wire the event handler if the player presses either Enter or A on the controller. The
last step is adding the LinkLabel to the control manager.

In the Update method I call the Update method of the ControlManager. For the parameters I pass in
the GameTime parameter from the Update method and PlayerIndex.One for the player index. For
now I will only be accepting input from the controller and PlayerIndex.One. In the Draw method I
call the Draw method of the ControlManager. If you call this before you draw the background image,
the background image will be drawn over top of the link label. I pass in the SpriteBatch from our
game reference.

The last method is the startLabel_Selected method. This will be called automatically if the player
selects the start label, you do not have to call this method explicitly. This is where events can be very
nice to work with. If you are interested in responding to an event you subscribe, or wire an event
handler to the event. This method just calls the PushState method of the GameStateManager passing
in the StartMenuScreen.

I think this is enough for this tutorial. I'd like to try and keep them to a reasonable length so that you
don't have too much to digest at once. I encourage you to visit the news page of my site, XNA Game

http://xnagpa.net/news.html

Programming Adventures, for the latest news on my tutorials.

Good luck in your game programming adventures!

Jamie McMahon

http://xnagpa.net/news.html

